期刊文献+

基于小波变换的图像去噪方法研究 被引量:11

Research of image denoising method based on wavelet transform
在线阅读 下载PDF
导出
摘要 图像去噪问题是一个古老的难题,也是当前研究的热点问题,而图像小波去噪算法在图像去噪方面虽然已取得了一定进步,但在这一领域仍然有许多问题需要研究,为了进一步提高图像去噪质量,改善图像视觉效果。在此通过在小波阀值萎缩法、基于混合模型的小波去噪法、小波去噪与其他算法相结合的三类方法中分别选用了三种典型算法即VisuSh rink法、基于高斯混合模型小波去噪法、中值滤波与小波去噪相结合的算法,对当前基于小波变换图像去噪这三类典型问题进行了研究。研究表明对于单一的噪声,用相应某种算法,就可能取得较理想效果。而对于混合噪声,单独的一种算法取得的效果是比较差的,只有采用几种算法相结合才能取得较好的效果,因而在此也为图像去噪指明了以后的研究方向。 Image denoising is an old problem, but a hot topic of current research. The image wavelet denoising algorithm has achieved some progress, but many problems still need to be solved in this area. In order to further improve the denoising quality and improve the image visual effects, three typical algorithms (VisuShrink algorithm, wavelet denoising method based on Gauss mixture model, and algorithm combining median filtering with wavelet denoising) are selected respectively from three methods: wavelet threshold shrinkage denoising method, wavelet denoising method based on mixture model, and combination of wavelet denoising algorithm and other algorithms. The current typical three types of image denoising methods based on wavelet transform are studied. The study result shows that, for a single noise, the corresponding some algorithm is possible to achieve ideal effect; for the mixed noise, only by combining several algorithms, can better results be achieved, since a single algorithm's effect is relatively poor. Therefore, the direction of the future development of image denoising research is pointed out in this paper.
作者 刘笃晋
出处 《现代电子技术》 2013年第14期93-95,共3页 Modern Electronics Technique
基金 国家自然科学基金(61152003) 四川省教育厅青年基金项目(10ZB085)
关键词 图像去噪 小波阀值萎缩法 混合模型 中值滤波 image denoising wavelet threshold atrophy method mixture model median filtering
  • 相关文献

参考文献5

二级参考文献28

  • 1彭玉华.一种改进的小波变换阈值去噪方法[J].通信学报,2004,25(8):119-123. 被引量:41
  • 2Pitas I, Venetsanopoulos A N. Nonlinear digital filters: Principles and applications[M]. Kluwer Academic Publishers, January 1990.(ISBN-0-7923-9049-0 ), also reprinted in Taiwan of China, 1993:416.
  • 3Lee Y H. Generalized median filtering and related nonlinear filtering technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (3) :672 ~ 683.
  • 4Kaoru Arakawa. Median filter based on fuzzy rules and its application to image restoration[J]. Fuzzy Sets and Systems, 1996,77:3 ~ 13.
  • 5Ataman E, Aatre V K, Wong K M. Some statistical properties of median filters[J]. IEEE Trans on Acoustics Speech, Signal Processing, 1980, 28(4): 415-421.
  • 6Pitas I, Venetsanopoulos A N. Nonlinear mean filters in image processing[J]. IEEE Trans on Acoustics Speech , Signal Processing, 1986, 34 (3): 573-584.
  • 7Jung H W, Da L L. Improved median filter using minmax algorithm for image processing[J]. Electronics Letters, 1997,33 (15).
  • 8Lee C S, Kuo Y H, Yu P T. Weighted fuzzy mean filters for image processing[J]. Fuzzy Sets and Systems,1997,89:157-180.
  • 9DONOHO D L.De-noising by Soft-thresholding[ J ].IEEE Trans.Information Theory,1995,41 (3):613-627.
  • 10LI Yu-Feng,NI Hong-xia.A new approach for the removal of mixed noise based on wavelet transform[ C ].Proc of SPIE.,2006.

共引文献185

同被引文献69

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部