期刊文献+

周期参数扰动的T混沌系统同宿轨道分析 被引量:8

Homoclinic orbits analysis of T chaotic system with periodic parametric perturbation
原文传递
导出
摘要 针对一类周期参数扰动的T混沌系统,通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统,运用Melnikov方法对系统的同宿轨道进行了分析计算,并给出了系统的同宿轨道参数分支条件.同时,通过数值实验,对周期参数扰动控制策略及同宿轨道进行了仿真,验证了文中理论分析的正确性. Using Melnikov method we have analysed and calculated the homoclinic orbits of a slowly varying oscillator, derived from the T chaotic system with generalized Hamiltonian structure under periodic parametric perturbation. Also the parameter bifurcation conditions of homoclinic orbits are obtained. The simulation results demonstrate the feasibility of periodic parametric perturbation control technology, and the correctness of the discussion in this paper.
机构地区 西京学院基础部
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第13期146-152,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10971164) 陕西省自然科学基础研究基金(批准号:2011EJ001) 陕西省教育厅科研计划项目(批准号:12JK1077 12JK1073) 西京学院科研基金项目(批准号:XJ120107 XJ120108 XJ120232)资助的课题~~
关键词 HAMILTON系统 MELNIKOV方法 同宿轨道 周期参数扰动 Hamilton system, Melnikov methods, homoclinic orbits, periodic parametric perturbation
  • 相关文献

参考文献4

二级参考文献36

  • 1LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the At- mospheric Sciences, 1963, 20(2): 130 - 141.
  • 2CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465 - 1466.
  • 3UETA T, CHEN G R. Bifurcation analysis of Chen's attractor[J]. In- ternational Journal of Bifurcation and Chaos, 2000, 10(8): 1917 - 1931.
  • 4CHEN G R, UETA T. Chaos in Circuits and Systems[M]. Singapore: World Scientific, 2002.
  • 5WANG Z. Existence of attractor and control of a 3D differential sys- tem[J]. Nonlinear Dynamics, 2010, 60(3): 369- 373.
  • 6YAMAPI R, CHABI OROU J B, WOAFO E Synchronization of the regular and chaotic states of electromechanical devices with and with- out delay[J]. International Journal of Bifurcation and Chaos, 2004, 14(1): 171 - 181.
  • 7WANG Z, WU Y T, LI Y X, et al. Adaptive Backstepping control of a nonlinear electromechanical system with unknown parameters[C]//Proceedings of the 4th International Conference on Computer Sci- ence and Education. Xiamen: Xiamen University Press, 2009:441 - 444.
  • 8WOAFO P, YAMAPI R, CHABI OROU J B. Dynamics of a Non- linear Electromechanical system with multiple functions in series[J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10(3): 229 - 251.
  • 9YAMAPI R, AZIZ-ALAOUI M A. Vibration analysis and bifurca- tions in the self-sustained electromechanical system with multiple functions[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(8): 1534- 1549.
  • 10YAMAPI R, CHABI OROU J B. Harmonic oscillations, stability and chaos control in a nonlinear electromechanical system[J]. Journal of Sound and Vibration, 2003, 259(5): 1253- 1264.

共引文献33

同被引文献50

  • 1任海鹏,刘丁.基于贝努力映射和CPLD的混沌A/D转换器[J].仪器仪表学报,2007,28(1):42-47. 被引量:14
  • 2李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用[M].北京:科学出版社,2007:123—152.
  • 3刘崇新.一个超混沌系统及其分数阶电路仿真实验[J].物理学报,2007,56(12):6865-6873. 被引量:74
  • 4Lorenz E N. Deterministic nonperiodic flow[J]. J. Atmospheric Sci., 1963,20(2): 130-14l.
  • 5Chen G R, Ueta T. Yet another chaotic attractor[J]. International J. Bifurcation and Chaos, 1999, 9(7): 1465-1466.
  • 6Celikovsky S, Vanecek A. Bilinear systems and chaos[J]. Kybernetika, 1994, 30(4): 403-424.
  • 7Lii J H, Chen G R. A new chaotic attract or coined[J]. International J. Bifurcation and Chaos, 2002, 12(3): 659-66l.
  • 8Yang Q G, Chen G R. A chaotic system with one saddle and two stable node-foci[J]. International J. Bifurcation and chaos, 2008, 18(5): 1393-1414.
  • 9Tigan Gh. Analysis of a dynamical system derived from the Lorenz system[J]. Sci. Bulletin of The Politehnica University of Timisoara, 2005, 50(64): 61-72.
  • 10Wang Z. Existence of attractor and control of a 3D differential system[J], Nonlinear Dynamics, 2010, 60(3): 369-373.

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部