期刊文献+

共振情形下四点泛函边值问题解的存在性 被引量:2

Solvability of functional differential equations with four-point boundary value problem at resonance
在线阅读 下载PDF
导出
摘要 运用Mawhin重合度理论,讨论了一类二阶四点泛函边值问题解的存在性和多解性.分别在非线性项f有界和无界的条件下,获得了此类泛函边值问题解的存在性结果. In this paper, by using Mawhin coincidence degree theorem, of the seconder-order functional differential equations with four-point Under the conditions of boundary and unboundary of the nonlinearity for the above functional boundary value problems are obtained. we study the solvability and multiplicity boundary value problems at resonance f respectively, the existence of solution
作者 杜睿娟
出处 《纯粹数学与应用数学》 CSCD 2013年第3期255-263,共9页 Pure and Applied Mathematics
基金 甘肃省自然科学基金(1107RJZA233) 甘肃政法学院科研资助青年项目(GZF2013XQNW)
关键词 泛函边值问题 存在性 CARATHEODORY条件 共振 functional value problem, existence, Caratheodory conditions, resonance
  • 相关文献

参考文献7

  • 1Zhang G, Sun J. Positive solutions of m-point boundary value problems[J]. J. Math. Anal. Appl., 2004,29(1): 406-418.
  • 2Padhi S, Shilpee Srivastava. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Appl. Math. Comput., 2008,203(1):1-6.
  • 3An Y. Existence of solution for a three-point boundary problem at resonance[J]. Non. Anal., 2006,65(3):1633- 1643.
  • 4莫宜春,孙晋易,王珍燕.一类泛函微分方程半正问题的正周期解[J].纯粹数学与应用数学,2012,28(1):137-142. 被引量:1
  • 5姚庆六.线性增长限制下一类三阶边值问题的可解性[J].纯粹数学与应用数学,2005,21(2):164-167. 被引量:11
  • 6Rachunkove, Stanek. Topological degree method in functional boundary value problems at resonance[J]. Nonlinear Anal., 1996,27:271-285.
  • 7Mawhin J. Topological degree methods in nonlinear boundary value problems[C]// NSF-CBMS Regional Conference series in Mathematics. Providence R I: American Mathematical Society, 1997.

二级参考文献10

  • 1Wang H, Positive periodic solutions for functional differential equations[J]. J. Differential Equations, 2004, 202:354-366.
  • 2Jiang D, Wei J, Zhang B. Positive periodic solutions of functional differential equations and population models[J]. Electron J. Differential Equations, 2002,71:1-13.
  • 3Anuradha V, Hai D D, Shivaji R. Existence results for superlinear semipositone BVP[J]. Proc. Amer. Math., 1996,124(3):757-763.
  • 4Ma R. Positive solutions for semipositone (k, n - k) conjugate boundary value problems[J]. J. Math. Anal. Appl., 2000,252:220-229.
  • 5Zhang G, Cheng S. Positive periodic solutions of nonautonomous functional differential equations depending on a parameter[J]. Abstract Appl. Anal., 2002,7:279-286.
  • 6Padhi S, Shilpee Srivastava. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Appl. Math. Comput., 2008,203(1):1-6.
  • 7Cheng S, Zhang G. Existence of positive periodic solutions for non-autonomous functional differential equa- tions[J]. Electron. J. Differential Equations, 2001,59:1-8.
  • 8Wan A, Jiang D, Xu X. A new existence theory for positive periodic solutions to functional differential equations[J]. Comput. Math. Appl., 2004,4:1257-1262.
  • 9姚庆六.某些非线性三阶常微分方程的几个存在性结论(英文)[J].纯粹数学与应用数学,2003,19(3):248-252. 被引量:3
  • 10姚庆六.三阶常微分方程的某些非线性特征值问题的正解[J].数学物理学报(A辑),2003,23(5):513-519. 被引量:54

共引文献10

同被引文献14

  • 1II'ii V A, Moiseev E I. Non-local boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. J Differential Equations, 1987, 23: 803- 810.
  • 2Gupta C P. Solvability of a multi-point value problem for a second order equation[J]. J Math Anal Appl, 1992, 168: 540-551.
  • 3Gupta C P. A generalized multi-point boundary value problem for second order ordinary differential equations[J]. Appl Math Comput, 1998, 89: 133-146.
  • 4Ma R. Positive solutions of a nonlinear three-point boundary value problem[J]. Elec J Diff Equa, 1999, 34: 1-8.
  • 5Liu X, Du Z, Ge W: Solvability of multipoi::t boundary value problems at resonance for higer-order ordinary differential equations[J]. Appl Math Comput, 2005, 49: 1-11.
  • 6Bai Z, Ge W. Existence and multiplicity of solutions for four-point boundary value problems at resonance[J]. Nonli Anal, 2005, 60: 1151-1162.
  • 7Pang H, Ge W. Existence and multiplicity of solutions for four-point boundary value problems at resonance[J]. Acta Mathematica Sinica Series, 2005, 48: 281-290.
  • 8Mawhin. Topological degree methods in nonlinear boundary value problems, in[C]// NSFCBMS Regional Conference Series in Mathematics, Amer. Math. Soc., Providence, RI, 1997.
  • 9孙建平,彭俊国,郭丽君.非线性三阶三点边值问题的正解[J].兰州理工大学学报,2009,35(1):139-142. 被引量:16
  • 10张克梅,蒋兰兰.奇异二阶泛函微分方程积分边值问题的正解[J].应用泛函分析学报,2011,13(1):65-72. 被引量:3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部