期刊文献+

凸域上拟双曲测地线直径的Gehring-Hayman恒等式 被引量:3

The Gehring-Hayman identity for the diameter of quasihyperbolic geodesics in convex domain
在线阅读 下载PDF
导出
摘要 将平面Jordan域上关于双曲测地线直径的Gehring-Hayman不等式推广到n维空间凸域上的拟双曲测地线.利用Mbius变换和拟双曲度量证明了n维空间凸域上连接任意二点x和y的拟双曲测地线的直径等于x与y之间的Euclidean距离.所得结果推广和改进了相关已有结果. Generalize the Gehring-Hayman inequality for the diameter of the hyperbolic geodesics in the plane Jordan domain to the quasihyperbolic geodesics in the convex domain of n-dimensional space. Making use of the MSbius transformation and the quasihyperbolic metric, we prove that the diameter of the quasihyperbolic geodesics with the endpoints x and y in the convex domain of n-dimensional space is equal to the Euclidean distance between x and y. The obtained result is a generalization and improvement of some known results.
出处 《纯粹数学与应用数学》 CSCD 2013年第3期241-245,274,共6页 Pure and Applied Mathematics
基金 浙江省自然科学基金(LY13A010004) 国家开放大学基金(Q1601E-Y) 浙江省教育厅基金(Y201223519)
关键词 凸域 拟双曲长度 拟双曲距离 拟双曲测地线 Gehring-Hayman不等式 convex domain, quasihyperbolic length, quasihyperbolic distance, quasihyperbolic geodesics,Gehring-Hayman inequality
  • 相关文献

参考文献23

  • 1Vaisala J. Lectures on n-Dimensional Quasiconformal Mappings [M]. New York: Springer Verlag, 1971.
  • 2Gehring F W, Hayman W K. An Inequality in the theory of conformal mapping [J]. J. Math. Pure Appl., 1962,41:353-361.
  • 3Pommerenke Ch, Rohde S. The Gehring-Hayman inequality in conformal mapping [C]// Gehring F W, Duren P L. Quasiconformal Mapping and Analysis. New York: Springer Verlag, 1998.
  • 4Heinonen J. The diameter conjecture for quasiconformal maps is true in space [J]. Proc. Amer. Math. Soc., 1995,123(6):1709-1718.
  • 5Martio O, Nakki R. Boundary HSlder continuity and quasiconformal mappings[J]. J. London Math. Soc., 1991,44(2):339-350.
  • 6Jaenisch S. Length distortion of curves under conformal mappings [J]. Michigan Math. J., 1968,15:121-128.
  • 7Oyma K. Harmonic measure and conformal length[J]. Proc. Amer. Math. Soc., 1992,115(3):687-689.
  • 8Fernandez J L, Hamilton D H. Length of curves under conformal mappings[J]. Comment. Math. Helv., 1987,62(1):122-134.
  • 9Gehring F W, Hayman W K, Hinkkanen A. Analytic functions satisfying HSlder conditions on the bound- ary[J]. J. Approx. Theory, 1982,35(3):243-249.
  • 10Kaufman R, Wu J M. Distances and the Hardy-Littlewood property [J]. Complex Variables Theory Appl., 1984,4(1):1-5.

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部