期刊文献+

Halton-type sequences from global function fields 被引量:1

Halton-type sequences from global function fields
原文传递
导出
摘要 For any prime power q and any dimension s≥1, a new construction of (t, s)-sequences in base q using global function fields is presented. The construction yields an analog of Halton sequences for global function fields. It is the first general construction of (t, s)-sequences that is not directly based on the digital method. The construction can also be put into the framework of the theory of (u, e, s)-sequences that was recently introduced by Tezuka and leads in this way to better discrepancy bounds for the constructed sequences. For any prime power q and any dimension s ≥ 1, a new construction of (t, s)-sequences in base q using global function fields is presented. The construction yields an analog of Halton sequences for global function fields. It is the first general construction of (t, s)-sequences that is not directly based on the digital method. The construction can also be put into the framework of the theory of (u, e, s)-sequences that was recently introduced by Tezuka and leads in this way to better discrepancy bounds for the constructed sequences.
出处 《Science China Mathematics》 SCIE 2013年第7期1467-1476,共10页 中国科学:数学(英文版)
关键词 low-discrepancy sequence (t s)-sequence Halton sequence global function field 构造序列 函数域 素数幂 数字化 体结构
  • 相关文献

参考文献19

  • 1Colbourn C J, Dinitz J H, eds. Handbook of Combinatorial Designs, 2nd ed. Boca Raton: CRC Press, 2006.
  • 2Dick J, Pillichshammer F. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration Cambridge: Cambridge University Press, 2010.
  • 3Faure H, Kritzer P. New star discrepancy bounds for (t, m, s)-nets and (t, s)-sequences. Monatsh Math, in press, doi: 10.1007/s00605-012-0470-1.
  • 4Halton J H. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math, 1960, 2:84-90.
  • 5Hofer R, Niederreiter H. A construction of (t, s)-sequences with finite-row generating matrices using global function fields. Finite Fields Appl, 2013, 21:97-110.
  • 6Mayor D J S, Niederreiter H. A new construction of (t, s)-sequences and some improved bounds on their quality parameter. Acta Arith, 2007, 128:177 191.
  • 7Niederreiter H. Point sets and sequences with small discrepancy. Monatsh Math, 1987, 104:273-337.
  • 8Niederreiter H. Low-discrepancy and low-dispersion sequences. J Number Theory, 1988, 30:51-70.
  • 9Niederreiter H. Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: Soc Industrial Applied Math, 1992.
  • 10Niederreiter H, (')zbudak F. Low-discrepancy sequences using duality and global function fields. Acta Arith, 2007, 130: 79-97.

同被引文献11

  • 1刘逸.粒子群优化算法的改进及应用研究[D].西安:西安电子科技大学,2013.
  • 2GARNIER S, GAUTRAIS J, THERAULAZ G. The biological principles of swarm intelligence [ J ]. Swarm intelligence, 2007, 1(1) :3 -31.
  • 3FENG M Y, PAN H. A modified PSO algorithm based on cache replacement algorithm[ C]//Tenth International Conference on Computational Intelligence and Security. Kunming, 2014:558 - 562.
  • 4LANGDON W B, POLI R. Evolving problems to learn about particle swarm and other optimisers [ C]//IEEE Congress on Evo- lutionary Computation. Edinburgh,2005:561 - 578.
  • 5HIGASHI N, IBA H. Particle swarm optimization with Gaussian mutation [ C ]//Proceedings of the IEEE Swarm Intelligence Symposium. Indianapolis, 2003 : 72 - 79.
  • 6MIRANDA V, FONSECA N. EPSO: evolutionary particle swarm optimization, a new algorithm with applications in power sys- tems[ C ]//Transmission and Distribution Conference and Exhibition. Yokohama, 2002:2491 -2505.
  • 7YANG H F, YANG Z Y, YANG Y, et al. An improved particle swarm optimization algorithm based on simulated annealing [ C l//10th International Conference on Natural Computation. Xiamen, 2014:529 -533.
  • 8BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization [ J ]. IEEE transaction on evolutionary computation, 2004,8 ( 3 ) : 225 - 239.
  • 9HANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of mul- timodal functions [ J]. IEEE transaction on evolutionary computation, 2006, 10(3) : 281 - 295.
  • 10吕丹,童创明,钟卫军.基于粒子群和模拟退火算法的混合算法研究[J].计算机工程与设计,2011,32(2):663-666. 被引量:12

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部