期刊文献+

Iterative Algorithm with Mixed Errors for Solving a New System of Generalized Nonlinear Variational-Like Inclusions and Fixed Point Problems in Banach Spaces

Iterative Algorithm with Mixed Errors for Solving a New System of Generalized Nonlinear Variational-Like Inclusions and Fixed Point Problems in Banach Spaces
原文传递
导出
摘要 A new system of generalized nonlinear variational-like inclusions involving A- maximal m-relaxed η-accretive (so-called, (A, η)-accretive in [36]) mappings in q-uniformly smooth Banach spaces is introduced, and then, by using the resolvent operator technique associated with A-maximal m-relaxed ~/-accretive mappings due to Lan et al., the exis- tence and uniqueness of a solution to the aforementioned system is established. Applying two nearly uniformly Lipschitzian mappings 81 and 82 and using the resolvent operator technique associated with A-maximal m-relaxed ~?-accretive mappings, we shall construct a new perturbed N-step iterative algorithm with mixed errors for finding an element of the set of the fixed points of the nearly uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the aforesaid system. We also prove the convergence and stability of the iterative sequence generated by the suggested perturbed iterative algorithm under some suitable conditions, The results presented in this paper extend and improve some known results in the literature.
作者 Javad BALOOEE
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第4期593-622,共30页 数学年刊(B辑英文版)
关键词 A-Maximal m-relaxed η-accretive mapping System of generalized non-linear variational-like inclusion Resolvent operator technique Conver-gence and stability Variational convergence 一致光滑Banach空间 扰动迭代算法 广义非线性 混合误差 变分包含 不动点问题 Lipschitz映射 系统
  • 相关文献

参考文献65

  • 1Agarwal, R. P., Huang, N. J. and Cho, Y. J inclusions with set-valued mappings, J. lnequal , Generalized nonlinear mixed implicit quasi-variational Appl., 7, 2002, 807-828.
  • 2Agarwal, R. P., Huang, N. J. and Tan, M. Y., Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Left., 17, 2004, 345-352.
  • 3Alimohammady, M., Balooee, J., Cho, Y. J. and Roohi, M., New perturbed finite step iterative algorithms for a system of extended generalized nonlinear mixed quasi-variational inclusions, Comput. Math. Appl., 60, 2010, 2953-2970.
  • 4Allevi, E., Gnudi, A. and Konnov, I. V., Generalized vector variational inequalities over product sets Nonlinear Anal., 47, 2001, 573-582.
  • 5Ansari, Q. H., Shalble, S. and Yao, J. C., Systems of vector equilibrium problems and its applications, J Optim. Theory Appl., 107, 2000, 547-557.
  • 6Ansari, Q. H. and Yao, J. C., A fixed point theorem and its applications to a system of variational inequalities, Bull. Austral. Math. Soc., 59, 1999, 433-442.
  • 7Bensoussan, A. and Lions, J. L., Application des In@quations Variationelles en Control et en Stochastiques Dunod, Paris, 1978.
  • 8Bianchi, M., Pseudo P-monotone operators and variational inequalities, Report 6, Istituto di econometria e Matematica per le desisioni economiehe, Universita Cattolica del sacro Cuore, Milan, Italy, 1993.
  • 9Chang, S. S., Cho, Y. J. and Zhou, H., Iterative Methods for Nonlinear Operator Equations in Banach Spaces, Nova Science Publishers Inc., Huntington, 2002.
  • 10Cho, Y. J., Fang, Y. P., Huang, N. J. and Hwang H. J., Algorithms for systems of nonlinear variational inequalities, J. Korean Math. Soc., 41, 2004, 489-499.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部