期刊文献+

Nonexistence of a Globally Stable Supersonic Conic Shock Wave for the Steady Supersonic Isothermal Euler Flow

Nonexistence of a Globally Stable Supersonic Conic Shock Wave for the Steady Supersonic Isothermal Euler Flow
原文传递
导出
摘要 In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and curved sharp conic body.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第4期557-574,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11025105,10931007,11101190) the Doctorial Program Foundation of Ministry of Education of China(No.20090091110005) the Natural Science Fundamental Research Project of Jiangsu Colleges(No.10KLB110002)
关键词 Supersonic flow Conic shock Full Euler system Isothermal gas NONEXISTENCE 全局稳定 超音速 圆锥体 欧拉 等温 流量 激波 冲击波解
  • 相关文献

参考文献26

  • 1Alinhac, S.,Temps de vie des solutions rgulires des quations d'Euler compressibles axisymtriques en di- mension deux, Invent. Math., 111(3), 1993, 627-670.
  • 2Chen, G. Q. and Li, T. H., Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge, J. Differential Equations, 244(6), 1965, 1521-1550.
  • 3Chen, G. Q., Zhang, Y. Q. and Zhu, D. W., Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Ration. Mech. Anal., 181(2), 2006, 261-310.
  • 4Chen, S. X., A free boundary value problem of Euler system arising in supersonic flow past a curved cone, Tohoku Math. J., 54(1), 2002, 105-120.
  • 5Chen, S. X. and Li, D. L., Conical shock waves for an isentropic Euler system, Proc. Roy. Soc. Edinburgh Sect. A, 135(6), 2005, 1109-1127.
  • 6Chen, S. X., Xin, Z. P. and Yin, H. C., Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys., 228, 2002, 47-84.
  • 7Courrant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, Interscience Publishers Inc., New York, 1948.
  • 8Cui, D. C. and Yin, H. C., Global conic shock wave for the steady supersonic flow past a cone: Isothermal case, Pacific J. Math., 233, 2007, 257-289.
  • 9Cui, D. C. and Yin, H. C., Global conic shock wave for the steady supersonic flow past a cone: Polytropic case, J. Differential Equations, 246, 2009, 641-669.
  • 10Godin, P., Long time existence of a class of perturbations of planar shock fronts for second order hyperbolic conservation laws, Duke Math. J., 60(2), 1990, 425-463.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部