期刊文献+

基因组编辑技术在植物中的研究进展与应用前景 被引量:17

Research Progress of Genome Editing in Plants
原文传递
导出
摘要 外源DNA导入细胞并与基因组靶基因发生同源重组可以精确修饰或替换靶基因,但在植物中产生自发同源重组的概率很低。近几年出现的人工改造核酸酶可以大幅提高同源重组的效率,实现基因组的精确、定向改造。其中,归巢核酸酶、锌指核酸酶和TALE核酸酶已在植物基因工程中得到成功应用,最近开发出来的基于CRISPR/Cas系统的基因组编辑技术则更具有高效方便等特点。这些人工核酸酶的应用为植物基因工程的发展呈现了更加美好的前景。首先介绍了基因组编辑技术及其发展历程,随后详细阐述了提高植物基因组定点编辑效率的策略,最后对基因组编辑技术在农业和植物基因工程上的应用进行了展望。 The precise insertion of a foreign DNA molecule at genome through homologous recombination remains low efficiency in plants. Genome editing is an important tool to precisely integrate DNA molecules at a defined genomic location. Extensive efforts have been made to understand the mechanisms governing gene targeting and to establish efficient systems to achieve precise and efficient targeting. A set of genome editing techniques, engineered meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, have recently emerged that enable targeted editing of genomes in plants. The recent development of genome editing technique based on the CRISPR/Cas system demonstrate that it is efficient and specific for wide application. The rapid progress in the field of genome editing was summarized, and then the potential perspective of the genome editing technology to be used in agriculture and plant engineering was discussed.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2013年第6期99-104,共6页 China Biotechnology
基金 国家"973"计划(2010CB35702 2012CB723703) 国家发改委生物育种专项(2012-2150299) 山东省自主创新工程招标项目(2012SD09101-1)资助项目
关键词 植物基因工程 基因组编辑 同源重组 人工核酸酶 Plant genome engineering Genome editing Homologous recombination Engineerednuelease
  • 相关文献

参考文献1

二级参考文献23

  • 1Joung JK, Sander JD. TALENs: a widely applicable technol-ogy for targeted genome editing. Nat Rev Mol Cell Biol 2012;14:49-55.
  • 2Moehle EA, Rock JM, Lee YL, et al. Targeted gene addi-tion into a specified location in the human genome using de-signed zinc fingernucleases. Proc Natl Acad Sci USA 2007;104:3055-3060.
  • 3Umov FD, Miller JC,Lee YL, et al Highly efficient endoge-nous human gene correction using designed zinc-finger nucle-ases. Nature 2005;435:646-651.
  • 4Hockemeyer D, Wang H,Kiani S, et al Genetic engineering ofhuman pluripotent cells using TALE nucleases. Nat Biotechnol2011;29:731-734.
  • 5Miller JC, Tan S, Qiao G, et al A TALE nuclease architecturefor efficient genome editing. Nat Biotechnol 2011; 29:143-148.
  • 6Chen F, Pruett-Miller SM, Huang Y,et al. High-frequency ge-nome editing using ssDNA oligonucleotides with zinc-fingernucleases. Nat Methods 2011; 8:753-755.
  • 7Bedell VM, Wang Y,Campbell JM, et al. In vivo genomeediting using a high-efficiency TALEN system. Nature 2012;491:114-118.
  • 8Makarova KS,Haft DH,Barrangou R, et al Evolution andclassification of the CRISPR-Cas systems. Nat Rev Microbiol2011;9:467-477.
  • 9Haurwitz RE, Jinek M,Wiedenheft B,Zhou K,Doudna JA.Sequence- and structure-specific RNA processing by a CRIS-PR endonuclease. Science 2010; 329:1355-1358.
  • 10Deltcheva E,Chylinski K,Sharma CM, et al. CRISPR RNAmaturation by trans-encoded small RNA and host factor RNaseIII. Nature 2011; 471:602-607.

共引文献163

同被引文献158

引证文献17

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部