期刊文献+

BPDA-ODA型聚酰亚胺基沸石杂化炭膜的制备及气体分离性能 被引量:1

Preparation and gas separation performance of hybrid carbon membranes from BPDA-ODA type polyimide and zeolites
在线阅读 下载PDF
导出
摘要 以BPDA-ODA型聚酰亚胺为前躯体,沸石为掺杂剂,通过成膜和炭化等过程制备了杂化炭膜.分别采用热失重、X射线衍射、扫描电子显微镜及渗透技术研究了前躯体热稳定性,炭膜微观结构、形貌及气体分离性能.考察了ZSM-5与5A两种沸石含量、炭化温度、渗透温度及渗透压力等因素对炭膜气体分离性能的影响.结果表明:H_2、CO_2、O_2和N_2 4种气体主要以分子筛分机理渗透通过炭膜,实现选择性分离.在650℃炭化温度下得到杂化炭膜随沸石含量提高,气体渗透性与选择性均略降低;5A杂化炭膜的渗透性与选择性都显著高于ZSM—5杂化炭膜;随渗透压力提高,杂化炭膜的气体渗透性与选择性升高.当炭化温度从650℃升高到750℃时,杂化炭膜的渗透性降低. Hybrid carbon membranes are first prepared using BPDA-ODA type polyimide and zeolites as precursors and additives,respectively.The thermal stability of the precursor was measured by thermogravimetric analysis.The microstructure,morphology and gas separation performance of resultant carbon membranes were characterized by X-ray diffraction,scanning electronic microscopy and gas permeation technique,respectively.The effects of zeolite types(ZSM-5 and 5A),zeolite dosage, carbonization temperature,and permeation-temperature and permeation-pressure were investigated on the gas separation performance of hybrid carbon membranes.The results have shown that the permeation mechanism for the four gases,H_2,CO_2,O_2 and N_2,is molecular sieving through the hybrid carbon membranes.When the hybrid carbon membranes are prepared at the carbonization temperature of 650℃, both of their permeability and selectivity slightly reduce.In comparison,5A is more favorable than ZSM-5 to be used as additives with the aspect to increase separation performance of resultant carbon membranes. With increasing the permeation pressure,both the permeability and selectivity increase.As the carbonization temperature goes up from 650℃to 750℃,the permeability of hybrid carbon membranes reduces.
出处 《膜科学与技术》 CAS CSCD 北大核心 2013年第3期33-38,共6页 Membrane Science and Technology
基金 国家自然科学基金(20906063) 辽宁省自然科学基金(20102170) 辽宁省高校优秀人才项目(LJQ2012010)
关键词 聚酰亚胺 炭膜 沸石 渗透性 polyimide carbon membranes zeolite permeability
  • 相关文献

参考文献23

  • 1Ismail A F, Rana D, Matsuura T, etal. Carbon-based membranes for separation processes[M]. Springer New York Dordrecht Heidelberg London, 2011.
  • 2Paul D tL Creating new types of carbon-based mem- branes[J]. Science, 2012, 335: 413--414.
  • 3Tin P S, Xiao Y, Chung T-S. Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors[J]. Sep Purif Rev, 2006, 35: 285--318.
  • 4Salleh W N W, Ismail A F, Matsuura T, etal. Precur- sor selection and process conditions in the preparation of carbon membrane for gas separation., a review[J]. Sep Purif Rev, 2011, 40: 261--311.
  • 5张兵,王同华,呼立红,曹义鸣,邱介山.聚酰亚胺基气体分离炭膜的进展[J].膜科学与技术,2007,27(5):97-101. 被引量:13
  • 6Sd S, Silva H, Josfi M, et al. Hydrogen production by methanol steam reforming in a membrane reaetor: Pal- ladium vs carbon molecular sieve membranes [J]. J Membr Sci, 2009, 339: 160--170.
  • 7Xiao Y, Chng ML, Chung TS, et al. Asymmetric structure and enhanced gas separation performance in- duced by in situ growth of silver nanoparticles in carbon membranes[J]. Carbon, 2010, 48: 408--416.
  • 8Tseng H-H, Shiu P-T, Lin Y-S. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation[J]. Hydrogen Ener- gy, 2011, 36.- 15352--15363.
  • 9Tin P S, Chung T-S, Jiang L, et al. Carbon zeolite composite membranes for gas separation[J]. Carbon, 2005, 43 : 2025--2027.
  • 10Liu Q, Wang T, Liang C, et al. Zeolite married to carbon: a new family of membrane materials with ex- cellent gas separation performance[J]. Chem Mater, 2006, 18:6283--6288.

二级参考文献29

  • 1Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation- a review [J]. Carbon, 2004,42:241 - 259.
  • 2Koros W J, Mahajan R. Pushing the limits on possibilities for large scale gas separation, which strategies [ J ]. J Membr Sci, 2000,175(2). 181 - 196.
  • 3Baker R W. Future direction of membrane gas separation technology [J]. Ind Eng Chem Res, 2002, 41: 1393- 1411.
  • 4Tanaka K, Kita H, Okano M, et al. Permeability and permselectivity of gases in fluorinated and non - fluorinated polyimides [J]. Polymer, 1992, 33:585-592.
  • 5Ghosal A S, Koros W J. Air separation properties of fiat sheet homogeneous pyrolytic carbon membranes [ J ]. J Membr Sci, 2000,174(2) : 177 - 188.
  • 6Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from metal - substituted sulfonated polyimide and their gas separation properties [J]. J Memhr Sci, 2003,226( 1 - 2) : 145 - 158.
  • 7Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. J Memhr Sci, 2004,229(1-2) :117 - 127.
  • 8Kim Y K, Lee J M, Park H B, et al. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups [ J ]. J Membr Sci, 2004,235(1 - 2) :139 - 146.
  • 9Park H B, Jung C H, Kim Y K, et al. Pyrolytic carbon membranes containing silica derived from poly (imide siloxane) : the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases [ J ]. J Membr Sci, 2004,235 ( 1 - 2) : 87 - 98.
  • 10张兵,王同华,丁孟贤,等.聚酰亚胺基炭分子筛膜的制备及表征[A].中国膜工业协会,第二届中国膜科学与技术报告会论文集[C].北京:2005:34-37.

共引文献12

同被引文献17

  • 1Chen X,Khoo K G,Kim M W,et al.Deriving a CO2- permselective carbon membrane from a multilayered ma- trix of polyion complexes[J].ACS Appl Mater Interf,2014,6(13):10220-10230.
  • 2Xu L,Rungta M,Hessler J,et al.Physical aging in carbon molecular sieve membranes[J].Carbon,2014,80:155-166.
  • 3Favvas E P.Carbon dioxide permeation study through carbon hollow fiber membranes at pressures up to 55 bar [J].Sep Purif Technol,2014,134:158-162.
  • 4Teixeira M,Rodrigues S C,Campo M,et al.Boehm- ite-phenolic resin carbon molecular sieve membranes - Permeation and adsorption studies[J].Chem Eng Res Des,2014,92(11):2668-2680.
  • 5Wang H B,Lin Y S.Synthesis and modification of ZSM-5/ silicalite bilayer membrane with improved hydrogen separa- tion performance[J].J Membr Sci,2012,396:128-137.
  • 6Park H.Relationship between chemical structure of ar- omatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J].J Membr Sci,2004,229(1/2):117-127.
  • 7Kim Y,Park H,Lee Y.Preparation and characteriza- tion of carbon molecular sieve membranes derived from BTDA- QDA polyimide and their gas separation proper- ties[J].J Membr Sci,2005,255(1/2):265-273.
  • 8Zhang B,Shi Y,Wu Y H,et al.Towards the prepara- tion of ordered mesoporous carbon/carbon composite membranes for gas separation[J].Sep Sci Technol, 2014,49(2):171-178.
  • 9Zhang B,Wu Y,Lu Y,et al.Preparation and cKarac- terization of carbon and carbon/zeolite membranes from ODPA- ODA type polyetherimide[J].J Membr Sci,2015,474:114-121.
  • 10Wang W,Eftekhari E,Zhu G,etal,Graphene oxide mem- branes with tunable permeability due to embedded carbon dots[J].Chem Commun,2014,50(86):13089-13092.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部