摘要
部分平衡t-设计t-(v,b,w;1,0)(X,A)称为可划分的,如果它同时也是一个部分平衡(t-1)-设计(t-1)-(v,b,w;λt-1,0)并且可将区组集A划分为A1,...,Aλt-1,使得每个(X,Ai)(1≤i≤λt-1)是一个部分平衡(t-1)-设计(t-1)-(v,b/λt-1,w;1,0).本文证明可划分部分平衡t-设计PPBDt-(v,b,w;λt-1,1,0)的存在性蕴含着完美(t,w,v;λt-1)-门限方案的存在性;而且在某些情况下,最优可划分部分平衡t-设计OPPBD(t,w,v)的存在性等价于最优(t,w,v)-门限方案的存在性.由此我们得到了最优(t,w,v)-门限方案的一些新的无穷类.
Abstract A partially balanced t-design t-(v, b, w; 1, 0) (X, fit) is called partitionable if it is also a partially balanced (t - 1)-design (t - 1)-(v, b, w; At-l, 0) and we can partition the block set fit into sets fit1,..., fitxt-1 such that each (X, fit~) (1 ≤i ≤ At-1) is a partially balanced (t- 1)-design (t- 1)-(v, b/)~t-1, w; 1, 0). We prove that the existence of partitionable partially balanced t-designs PPBD t-(v, b, w; At-l, 1, 0)s implies the existence of perfect (t, w, v; A,_l)-threshold schemes, moreover, the existence of optimal partitionable partially balanced t-designs OPPBD(t, w, v)s is equivalent to the existence of optimal (t, w, v)-threshold schemes in certain circumstances. Further, we obtain some new infinity classes of optimal (t, w, v)-threshold schemes.
出处
《中国科学:数学》
CSCD
北大核心
2013年第6期625-634,共10页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11171248)资助项目
关键词
最优门限方案
可划分部分平衡t-设计
可划分可分组t-设计
optimal threshold schemes partitionable partially balanced t-design, partitionable groupdivisible t-design