期刊文献+

完美门限方案的组合构造

A combinatorial construction for perfect threshold schemes
原文传递
导出
摘要 部分平衡t-设计t-(v,b,w;1,0)(X,A)称为可划分的,如果它同时也是一个部分平衡(t-1)-设计(t-1)-(v,b,w;λt-1,0)并且可将区组集A划分为A1,...,Aλt-1,使得每个(X,Ai)(1≤i≤λt-1)是一个部分平衡(t-1)-设计(t-1)-(v,b/λt-1,w;1,0).本文证明可划分部分平衡t-设计PPBDt-(v,b,w;λt-1,1,0)的存在性蕴含着完美(t,w,v;λt-1)-门限方案的存在性;而且在某些情况下,最优可划分部分平衡t-设计OPPBD(t,w,v)的存在性等价于最优(t,w,v)-门限方案的存在性.由此我们得到了最优(t,w,v)-门限方案的一些新的无穷类. Abstract A partially balanced t-design t-(v, b, w; 1, 0) (X, fit) is called partitionable if it is also a partially balanced (t - 1)-design (t - 1)-(v, b, w; At-l, 0) and we can partition the block set fit into sets fit1,..., fitxt-1 such that each (X, fit~) (1 ≤i ≤ At-1) is a partially balanced (t- 1)-design (t- 1)-(v, b/)~t-1, w; 1, 0). We prove that the existence of partitionable partially balanced t-designs PPBD t-(v, b, w; At-l, 1, 0)s implies the existence of perfect (t, w, v; A,_l)-threshold schemes, moreover, the existence of optimal partitionable partially balanced t-designs OPPBD(t, w, v)s is equivalent to the existence of optimal (t, w, v)-threshold schemes in certain circumstances. Further, we obtain some new infinity classes of optimal (t, w, v)-threshold schemes.
出处 《中国科学:数学》 CSCD 北大核心 2013年第6期625-634,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171248)资助项目
关键词 最优门限方案 可划分部分平衡t-设计 可划分可分组t-设计 optimal threshold schemes partitionable partially balanced t-design, partitionable groupdivisible t-design
  • 相关文献

参考文献23

  • 1Stinson D R, Vanstone S A. A combinatorial approach to threshold schemes. SIAM J Discrete Math, 1988, 1:230-236.
  • 2Abel R J R, Ge G, Yin J. Resolvable and near-resolvable designs. In: Colbourn C J, Dinitz J H, eds. The CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 2007, 124-132.
  • 3Scheiienberg P J, Stinson D R. Threshold schemes from combinatorial designs. J Combin Math Combin Comput, 1989, 5:143-160.
  • 4Teirlinck L. A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems. J Combin Theory Ser A, 1991, 57:302-305.
  • 5Teirlinck L. Some new 2-resolvable Steiner quadruple systems. Des Codes Cryptogr, 1994, 4:5-10.
  • 6Cao H, Ji L, Zhu L. Large sets of disjoint packings on 6k q- 5 points. J Combin Theory Ser A, 2004, 108:169-183.
  • 7Cao H, Lei J, Zhu L. Large sets of disjoint group-divisible designs with block size three and type 2n41. J Combin Des, 2001, 9:285-296.
  • 8Cao H, Lei J, Zhu L. Further results on large sets of disjoint group-divisible designs with block size three and type 2n41. J Combin Des, 2003, 11:24-35.
  • 9Cao H, Lei J, Zhu L. Constructions of large sets of disjoint group-divisible designs Ls(2n41) using a generalization of *LS(2n). Discrete Math, in press, 2005.
  • 10Chen D, Lindner C C, Stinson D R. Further results on large sets of disjoint group-divisible designs. Discrete Math, 1992, 110:35-42.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部