期刊文献+

复杂情况下的多目标跟踪统计技术 被引量:1

Multi-target Tracking Statistical Techniques in Complex Case
在线阅读 下载PDF
导出
摘要 根据基于视频监控客流量统计的应用要求,得到了一种改进的背景检测和跟踪计数方法,实现了多人准确跟踪计数。传统的高斯背景建模是对一帧图像的每个像素点进行更新且分配固定的高斯分布个数,使得资源消耗量增大;这里通过先判断待更新区域,然后对更新区域采用动态调节高斯分布的方法对像素点进行更新,同时考虑到均值与方差的特点,分别设置了各自的更新速率。跟踪部分利用连通域分析创建人体结点并得到目标的形心,采用向前优先搜索像素点的原则搜索下一帧图像的所有像素点,通过搜索到的像素点来确定目标的新中心位置,再根据目标中心与计数线的关系进行计数。实验证明该算法简单可行,实现了多目标的准确跟踪,统计数据具有较高的正确率。 According to application requirement of video-based traffic statistics in video surveillance, the paper proposed improved background detection and tracking count method. Each pixel of a frame is to be updated in the traditional Gaussian background modeling and the number of Gaussian distribution is fixed which makes resources consumption in- crease. This article proposed that the update area is need to be fund firstly and then update the area. The region is upda- ted by using dynamic adjusting Gaussian distribution method. At the same time, considering the characteristics of the mean and variance, and seting respectively their update rate. Connected domain analysis is applied to create the human node and get the node's centroid. Finally according to the nodes' centroid which has been created in the list, first search forward is used. All target pixels are searched in the next frame which are used to determine the new position of the ob- ject in the video. Experiments show that the algorithm is simple and feasible and implements accurate tracking of multi- pie targets. The system achieves statistical data with high accuracy.
出处 《计算机科学》 CSCD 北大核心 2013年第6期268-271,共4页 Computer Science
基金 江苏省博士后科研资助计划基金项目(1001027B) 江苏省高校自然科学研究项目(09KJB510002)资助
关键词 视频监控 客流量统计 背景建模 混合高斯模型 连通域分析 多目标跟踪 Video surveillance, Traffic statistics, Background model, Mixture Gaussian model, Tracking of multiple targets, Connected domain analysis
  • 相关文献

参考文献7

二级参考文献65

共引文献68

同被引文献8

  • 1张德才.视频流中多人体跟踪算法研究[D].长春:吉林大学,2011.
  • 2Sivaraman, S, Trivedi M.M. Integrated Lane and Vehicle Detection, Localization, and Tracking: ASynergist ic Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(02):906-917.
  • 3de la Rubia E.,Diaz-Estrella A. Improved pedestrian tracking through alman covariance error seIective reset[J].Electronics Letters, 2013,49(07):464-465.
  • 4Rezaee K, Alavi S R, Madanian M, et al. Real-time intelligent alarm system of driver fatigue based on video sequences[C]//Robotics and Mechatronics (ICRoM),2013 First RSI/ ISM International Conference on. IEEE, 2013: 378-383.
  • 5Herout A, Dubsk M, ttavel J.Review of Hough Transform for Line Detect ion [M] //Real-Time Detect ion of Lines and Grids. Springer London, 2013:3-16.
  • 6王田,刘伟宁,韩广良,杜超,刘恋.基于改进MeanShift的目标跟踪算法[J].液晶与显示,2012,27(3):396-400. 被引量:28
  • 7张正华,许晔,苏权,谢敏.基于背景差分和混合帧差的运动目标检测[J].无线电工程,2012,42(8):14-17. 被引量:10
  • 8亢朋朋,朱锡芳,南东亮,金运策.一种改进Mean shift算法的视频监控系统[J].微电子学与计算机,2013,30(2):153-156. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部