High-Precision Direct Method for the Radiative Transfer Problems
High-Precision Direct Method for the Radiative Transfer Problems
摘要
It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.
基金
Supported by the Youth Foundation of Beijing University of Chemical Technology under Grant No. QN0622
参考文献18
-
1R.Q. Huang, Theory of Stellar Atmosphere, Yunnan Peo- ples Press, Kunming (1986).
-
2S. Chandrasekhar, Radiative Transfer, Dover Publica- tions Inc, New York (1960).
-
3J.V. Dave, J. Atmos.~Sci. 32 (1975) 790.
-
4R.J. Rutten, Radiative Transfer in Stellar Atmospheres, 8th ed. Utrecht University Lecture Notes, Utrecht (2003) p. 122.
-
5D. Mihalas, Stellar Atmospheres, 2nd, Freeman and Com- pany, San Francisco (1978).
-
6C.J. Cannon, Astrophys. J. 185 (1973) 621.
-
7C.J. Cannon, J. Quant. Spectrosc. Radiat. Transfer. 13 (1973) 627.
-
8G.L. Olson, L.H. Auer, and J.R. Buchler, J. Quant. Spec- trosc. Radiat. Transfer. 35 (1986) 431.
-
9J.B. Trujillo and B.P. Fabiani, Astrophys. J. 455 (1995) 646.
-
10M. Sampoorna and J.B. Trujillo, Astrophys. J. 712 (2010) 1331.
-
1超级拖拉机迷[J].汽车测试报告,2005(4):33-33.
-
2金亚秋.非均匀散射介质的二维矢量辐射传输方程[J].科学通报,1990,35(13):983-985. 被引量:1
-
3张俊丽,韩贵春.不同的离散矩阵对数值微分的影响[J].内蒙古民族大学学报(自然科学版),2014,29(2):139-141. 被引量:1
-
4陆柱家,陆昱.Simpson法则与幂之和[J].数学译林,2015,0(2):191-191.
-
5刘建斌,曹帅,游春莲,胡旭波.辐射传输中的相函数展开方法研究[J].光学与光电技术,2008,6(5):23-25.
-
6TAN HePing,LIU LinHua,YI HongLiang,ZHAO JunMing,QI Hong,TAN JianYu.Recent progress in computational thermal radiative transfer[J].Chinese Science Bulletin,2009,54(22):4135-4147. 被引量:8
-
7周建丽,陈钢.“均匀球壳对壳内物体引力为0”证明问题的探讨[J].物理教师,2013,34(9):60-61. 被引量:4
-
8李绍明,滕成业.微分环上矩阵变元的带状多项式及应用[J].昆明工学院学报,1997,22(6):48-51. 被引量:1
-
9沈艳,张丽玲.基于复合辛普森公式的GM(1,1)模型背景值的优化[J].应用科技,2016,43(4):71-84. 被引量:6
-
10徐希.微分环上微分多项式的基本性质[J].深圳大学学报(理工版),2003,20(1):45-48.