摘要
本实验旨在研究当建模样品集的数据分布分别呈正态分布与均匀分布时对构建玉米粗蛋白的傅立叶近红外预测模型的影响,探讨建立近红外光谱预测模型的快速方法。本试验组建3个不同定标集,且其粗蛋白含量的数据分布分别呈现均匀分布(10.00,0.85)、正态分布1(10.02,0.692)、正态分布2(10.01,0.692)特征,建立粗蛋白的近红外预测模型。结果表明:均匀分布、正态分布1和正态分布2所对应的模型的R2分别为0.9879、0.9858、0.9862,RMSECV分别为0.1055、0.1079、0.1069,RSD%分别为1.06、1.08、1.07;均匀分布模型在预测各个范围的粗蛋白时其误差均在0.04以内,而正态分布1模型的误差依次为0.09、0.06、0.02、0.01、0.07、0.10。结果显示,在相同定标样品数下,定标集呈均匀分布时所建预测模型的预测误差变异小,并且在预测含量偏离平均数较大的样品时效果好于正态分布,而正态分布则是在预测含量在接近平均数的样品时有优势;同时在减少一定数量的定标样品后,使用均匀分布的定标集仍然可以保持所建预测模型的准确性。
出处
《中国畜牧杂志》
CAS
北大核心
2013年第11期45-48,共4页
Chinese Journal of Animal Science
基金
四川省杰出青年学术技术带头人资助计划(2010JQ0043)
四川农业大学双支计划