期刊文献+

酿酒酵母耐受单萜类化合物的机理研究进展 被引量:3

Tolerance of Saccharomyces cerevisiae to monoterpenes——A review
原文传递
导出
摘要 增强酿酒酵母对单萜的耐受性对于利用其生产单萜和利用含有单萜的生物质均具有重要意义。深入了解酿酒酵母应对单萜胁迫机理有助于构建一株较高单萜耐受性的酵母菌株,该菌株将有助于更高效率的单萜生产效率。研究表明,单萜会破坏酿酒酵母体内的氧化还原平衡,造成活性氧积累并进而导致菌体死亡。为了应对单萜诱发氧胁迫造成的损伤,酿酒酵母需要系统提升其抗氧化能力。本文归纳了酿酒酵母耐受多种典型单萜化合物胁迫机制的研究进展,并从酿酒酵母自身抗氧化机制方面,介绍了酿酒酵母应对氧胁迫的策略,并提出了进一步研究的方向。 Tolerance of Saccharomyces cerevisiae to monoterpenes is important in both metabolic engineering of the yeast to produce these chemicals de novo and efficient use of biomass containing these chemicals.Understanding the mechanisms in the tolerance of S.cerevisiae to monoterpenes could facilitate the construction of yeast strains with enhanced monoterpenes resistance,and therefore improve related bioprocesses.Monoterpenes could disturb the redox balance in S.cerevisiae,therefore increase the accumulation of reactive oxygen species(ROS) and result in cell death.S.cerevisiae has to systematically improve its antioxidative ability to deal with the ROS induced damage.The current review summarized the recent developments in demonstration of the tolerance of S.cerevisiae to different typical monoterpenes mainly from the aspect of the antioxidative mechanisms.Based on the analysis of the previous works,further attempts to demonstrate the mechanisms were proposed.
出处 《微生物学报》 CAS CSCD 北大核心 2013年第6期531-537,共7页 Acta Microbiologica Sinica
基金 国家自然基金青年基金项目(31000807) 江苏省自然基金项目(BK2010150)~~
关键词 酿酒酵母 单萜 细胞膜 氧胁迫 活性氧 Saccharomyces cerevisiae monoterpenes cell membrane oxidative stress reactive oxygen species
  • 相关文献

参考文献35

  • 1Bakkali F, Averbeck S, Averbeck D, Idaomar M.Biological effects of essential oils-a review. Food andChemical Toxicology, 2008,46(2) :446-475.
  • 2Cordoba E, Salmi M , Le6n P. Unravelling the regulatorymechanisms that modulate the MEP pathway in higherplants. Journal of Experimental Botany, 2009 , 60( 10):2933-2943.
  • 3Fischer MJC,Meyer S,Claudel P, Bergdoll M , Karst F.Metabolic engineering of monoterpene synthesis in yeast.Biotechnology and Bioengineering, 2011,108(8) : 1883-1892.
  • 4Oswald M, Fischer M, Dirninger N,Karst F.Monoterpenoid biosynthesis in Saccharomyces cerevisiae.FEMS Yeast Research,2007, 7(3) :413-421.
  • 5Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, JohnsonCB, Kampranis SC, Makris AM. Improving yeast strainsusing recyclable integration cassettes,for the productionof plant terpenoids. Microbial Cell Factories,2011, 10(1):4-22.
  • 6Hu F, Liu J,Du G, Hua Z, Zhou J, Chen J. Keycytomembrane ABC transporters of Saccharomycescerevisiae fail to improve the tolerance to D-limonene.Biotechnology Letters, 2012, 34 (8 ) : 1505-1509.
  • 7Belletti N,Kamdem SS, Tabanelli G, Lanciotti R,Gardini F. Modeling of combined effects of citral,linalool and beta-pinene used against Saccharomycescerevisiae in citrus-based beverages subjected to a mildheat treatment. International Journal of FoodMicrobiology,2010,136(3):283-289.
  • 8Liu J,Zhu Y,Du G, Zhou J, Chen J. Exogenousergosterol protects Saccharomyces cerevisiae from D-limonene stress. Journal of Applied Microbiology, 2013 ,114(2) :482-491.
  • 9Parveen M,Hasan MK, Takahashi J, Murata Y,Kitagawa E, Kodama 0,Iwahashi H. Response ofSaccharomyces cerevisiae to a monoterpene : evaluation ofantifungal potential by DNA microarray analysis. Journalof Antimicrobial Chemotherapy, 2004, 54( 1) :46-55.
  • 10Bard M,Albrecht MR,Gupta N,Guynn C. J. , StillwellW. Geraniol interferes with membrane functions instrains of Candida and Saccharomyces. Lipids,1988 , 23(6):534-538.

同被引文献12

引证文献3

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部