期刊文献+

基于周期相似性和LSSVM的交通流量多步预测 被引量:1

Multi-step prediction of traffic flow based on cycle similarity and least squares support vector machines
在线阅读 下载PDF
导出
摘要 在对交通流量进行短期预测时,历史数据的选取至关重要.定义了相似系数和波动系数,分别对每周交通流量相似性和不同周同一工作日的交通流量相似性进行分析,在对周期相似性判定的基础上,选取相似的交通流量数据作为训练数据.利用LSSVM模型,以1d为1步,进行连续5步的交通流量预测,实践结果表明LSSVM在交通流预测领域具有良好的适应性及应用前景. The selection of historical data is essential to the short-term traffic flow prediction. This paper defines a similarity coefficient and a fluctuation coefficient. The traffic flow simi- larity of each week and the same working day in different weeks are analyzed respectively. On the basis of cycle similarity determinant, the similar traffic flow data are selected as the training data. During the prediction process of traffic flow using LSSVM, a day as a step, the 5-step prediction is done in succession. The results show that the model has better generalization ability. Therefore,there is a favorable application prospect.
出处 《青岛理工大学学报》 CAS 2013年第2期86-91,共6页 Journal of Qingdao University of Technology
关键词 交通流量 流量预测 相似系数 最小二乘支持向量机 traffic flow flow prediction similarity coefficient least squares support vector machines(LSSVM)
  • 相关文献

参考文献7

  • 1杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:84
  • 2Yu Lean,Chen Huan-huan,Wang Shou-yang. Evolving least squares support vector machines for stock market trend mining[J]. IEEE Transactions on Evolutionary Computation, Z009,13 ( 1 ) : 87-102.
  • 3欧晓凌,裘刚,张毅,李志恒.城市交通流信息相似性分析与研究[J].中南公路工程,2003,28(2):4-7. 被引量:24
  • 4CAO Shu-gang,LIU Yan-bao,WANG Yan-ping.A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM[J].Journal of China University of Mining and Technology,2008,18(2):172-176. 被引量:29
  • 5Hanbay D. An expert system based on least square support vector machines for diagnosis of the valvular heart disease[J]. Expert Sys- tems with Applications, 2009,36 (4) : 8368-8374.
  • 6Kang Y W, Li J,Cao G Y, et al. Dynamic temperature modeling of an SOFC using least squares support vector machines[J]. Journal of Power Sources,2008,179(2) :683-692.
  • 7Polat K,Kara S, Latifoglu F, et al. Pattern detection of atherosclerosis from carotid artery doppler signals using fuzzy weighted pre- processing and least square support vector machine[J]. Annals of Biomedical Engineering,2007,35(5) : 724-732.

二级参考文献20

共引文献134

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部