期刊文献+

本征时间尺度排序熵及其在滚动轴承故障诊断中的应用 被引量:8

Intrinsic time scale permutation entropy and its application in rolling bearing fault diagnosis
在线阅读 下载PDF
导出
摘要 针对滚动轴承故障振动信号的非平稳、非线性特性,将经验模态分解方法和排序熵有机结合,提出一种新的基于自适应尺度的复杂度参数——本征时间尺度排序熵,用于描述不同本征模态分量的复杂程度,从而实现故障特征的量化描述。首先,将原始振动信号经过EMD分解得到若干本征模态分量,然后分别对各本征模态分量计算排序熵,即可得到不同本征时间尺度排序熵,最后利用该参数实现不同故障状态的有效区分与识别。实例分析结果表明了该方法的有效性和实用性,从而为机械设备状态监测与故障诊断提供了一种有效途径。 Aiming at the nonstationary and nonlinear characteristics of bearing fault vibration signals, a new complexity measure based on the adaptive scales, intrinsic time scale permutation entropy, is proposed. It combined the merits of both empirical mode decompostion algorithm and permutation. The new measure can describe the complex degree of different intrinsic mode functions and quantify the fault features. First, the original vibration signals are decomposed into several intrinsic mode functions by EMD algorithm; second, permutation entropies of different IMFs are computed respectively to obtain the different intrinsic time scale permutation entropy; finally, different working states are identified and classified effectively. The case analysis results validate the availability and feasibility of the proposed method. The new method can provide an effective way for condition monitoring and fault diagnosis of mechanical equipments.
出处 《燕山大学学报》 CAS 2013年第2期179-184,共6页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2011203149)
关键词 经验模态分解 复杂度 排序熵 故障诊断 滚动轴承 empirical mode decomposition complexity permutation entropy fault diagnosis rolling bearings
  • 相关文献

参考文献8

  • 1Huang N E, Shen Zheng, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-sta- tionary time series analysis [J]. Proceedings of Royal Society of LondonA, 1998,454: 903-995.
  • 2Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series [J]. Pysical Review Letters, 2002,88 (17): 1-4.
  • 3Li X, Ouyang G, Richards D A. Predictability analysis of absence seizures with permutation entropy [J]. Epilepsy Research, 2007,77 (1): 70-74.
  • 4Li X, Ouyang G, Liang Z. Complexity measure of motor current signals for tool flute breakage detection in end milling [J]. Inter- national Journal of Machine Tools and Manufacture, 2008,48 (3/4): 371-379.
  • 5刘永斌,龙潜,冯志华,刘维来.一种非平稳、非线性振动信号检测方法的研究[J].振动与冲击,2007,26(12):131-134. 被引量:39
  • 6Yan R, Liu Y, Gao R X. Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines [J]. Mech- anical Systems and Signal Processing, 2012,29: 474-484.
  • 7谢平,王欢,杜义浩.基于EMD和Wigner—Ville分布的机械故障诊断方法研究[J].计量学报,2010(5):390-394. 被引量:20
  • 8Kenneth A Loparo. Western Reserve University Bearing Data Cen- terWebsite [EB/OL]. (2012-04-10) http: //csegroups. case. edu/bearingdatacenter/home, 2012-04-10.

二级参考文献21

  • 1胡维平,莫家玲,龚英姬,赵方伟,杜明辉.经验模态分解中多种边界处理方法的比较研究[J].电子与信息学报,2007,29(6):1394-1398. 被引量:32
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London, A, 1998, 454 : 903 - 995.
  • 3Huang N E, Shen Z, Long S R. A new view of nonlinear water-waves: The Hilbert spectrum[ J]. Annual Review of Fluid Mechanics, 1999, 31 : 417 -457.
  • 4科恩L著.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 5Sheng S, Zhang L, Robert X Gao. A Systematic Sensor- Placement Strategy for Enhanced Defect Detection in Rolling Beatings [ J ]. Sensors Journal, IEEE, 2006 , 6 (5): 1346 --1354.
  • 6梅宏斌著.滚动轴承振动检测与诊断[M].北京:机械工业出版社,1996.
  • 7Schreiber T. Phys. Rev. Lett. 78, 843 ,1997.
  • 8Provenzale A, Smith L A, Vio R, Murante G. Physica D 58, 31,1992.
  • 9Yu D J, Lu W P, Harrison R G. Phys. Lett. A 250, 323,1998.
  • 10Manuca R,Savit R. Physica D 99,134,1996.

共引文献57

同被引文献77

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部