期刊文献+

基于单帧图像的超分辨率算法

Super-resolution algorithm based on a single low-resolution image
在线阅读 下载PDF
导出
摘要 随着稀疏编码与压缩传感理论的逐步发展,如何应用于图像的超分辨率成为研究热点之一.基于示例学习的算法,提出了一种新的超分辨率算法,其特点在于只基于低分辨率图像本身,没有额外的样本库,运用自然图像的自相似性与冗余性,学习低分辨率图像块与高分辨率图像块之间的函数关系.为了从图像中获取更加全面的信息,采用Guided滤波、一阶导数和二阶导数2种方法来提取特征.此外,提出了一种新的字典学习算法R-KSVD,并且改进了后项处理过程.实验结果显示,提出的算法具有较好的超分辨率效果和稳定性. With the development of sparse coding and compressive sensing,image super-resolution reconstruction attracted extensive attentions.Based on the example-based algorithm,it was proposed a new super-resolution method.It exploited the relationship between the low image patches and the high image patches by the self-similarity of a natural image.The proposed method applied guided filter,the first-order and second-order derivatives to extract two kinds of features from the LR image,which was superior to using only one feature space.Besides,the effective dictionary was constructed by a novel algorithm called Relaxation K-SVD(R-KSVD).Moreover,a new approach was proposed to estimate better HR residual image in the Back Projection.Experimental results demonstrated the superiority of the algorithm in both visual fidelity and numerical measures.
出处 《浙江师范大学学报(自然科学版)》 CAS 2013年第2期121-126,共6页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(61170109) 浙江省科技厅公益性应用研究计划项目(2012C21021)
关键词 超分辨率 稀疏编码 方向滤波 自相似性 super-resolution sparse coding guided filter self-similarity
  • 相关文献

参考文献11

  • 1Yang Jianchao ,Wright J, Huang T S, et al. Image super-resolution as sparse representation of raw image patches [ C ]//CVPR. Anchorage: IEEE,2008 : 1-8.
  • 2Goto T, Suzuki S, Hirano S, et al. Fast and high quality learning based super-resolution utilizing 'IV regularization method [ C ]//ICIP. Brussels: IEEE,2011 : 1185-1188.
  • 3Tang Yi, Pan Xiaoli, Yuan Yuan, et al. Loc semi-supervised regression for single-image super-resolution [ C ]//MMSP. Hangzhou : IEEE,2011 : 1-5.
  • 4Yang Shuyuan, Wang Min, Chen Yiguang, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clusterext sparse coding[ J ]. ICIP ,2012,21 (9) :4016 -4028.
  • 5Jiang Junjun, Hu Ruimin, Hart Zhen, et al. Efficient single image super-resolution via graph embedding [C ]//1CME. Melbourne: IEEE, 2012 : 610-615.
  • 6Glasner D, Bagon S, Irani M. Super-resolution from a single image[ C ]//Computer Vision. Kyoto:IEEE,2009:349-356.
  • 7Chen Shaofeng, Gong Hanjie, Li Cuihua. Super resolution from a single image based on self-similarity [ C ]//ICCIS. Chengdu : IEEE, 2011 : 91 - 94.
  • 8He Kaiming,Sun Jian,Tang Xiaoou. Guided image filtering[ M]. Bedin :Springer-Verlag,2010 : 1-14.
  • 9Yang Jianehao,Wang Zhanwen,IAn Zhe,et al. Coupled dictionary training for image super-resolution[J].lCIP,2012,21.(8) :3467-3478.
  • 10Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity [ J ]. ICIP, 2004,13 (4) :600- 612.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部