期刊文献+

水分子对α相CL-20热分解机理影响的分子动力学研究 被引量:13

Molecular Dynamics Study of the Effect of H_2O on the Thermal Decomposition of α Phase CL-20
在线阅读 下载PDF
导出
摘要 研究六硝基六氮杂异伍兹烷(CL-20)晶体不同晶型在不同温度下的反应机理,对于深入认识含能材料在极端条件下的冲击起爆、冲击点火和爆轰过程等具有重要意义.基于反应力场,研究水分子在纯α相CL-20及其水合物的晶体结构中数量随时间的变换,分析水分子对两种体系的初始分解和第二阶段的分解路径的影响.计算结果表明:CL-20分子的初始分解路径与水分子无关,第二阶段的分解反应与水分子有关.在低温(T<1500K)下,水分子对两种体系没有影响,二者的初始分解路径均为N―NO2键生成NO2自由基;在1500K≤T≤2500K时,水分子作为反应物或与NO2、OH自由基等组成催化体系,生成O2、H2O2等产物,加速水合物体系在高温下的第二阶段反应,使得高温下水合物体系的化学反应速率和反应生成的NO2自由基的数量比纯CL-20体系的化学反应速率和反应生成的NO2自由基的数量大;在T>2500K时,水分子的催化反应抑制CL-20初始分解反应,使得在3000K时纯CL-20体系的反应速率大于水合物体系中CL-20的反应速率. The response of the mechanisms of the α polymorph of CL-20 (α-CL-20) to high temperature is important for understanding the phenomenon of shock initiation, shock ignition, and detonation. The thermal decomposition of α-CL-20 hydrate and pure α-CL-20 were studied by ReaxFF reactive molecular dynamics simulations to obtain the time evolution of water molecules and the effect of H2O on the mechanisms of CL-20 at high temperatures. It was determined that the initial decomposition mechanisms of CL-20 are not dependent on the presence of water, but the secondary reaction pathways are. At low temperatures (7"〈1500 K), there is no relationship between the H20, hydrate CL-20, and pure CL-20 systems, as the mechanism is only the dissociation of the N - NO2 bond to form the NO2 radical. At high temperatures (1500 K≤T≤2500 K), water molecules act as a reactant or form catalytic systems with NO2 radical to form OH radical, leading to the formation of 05, H202, and other products. Water molecules accelerate the secondary stage reaction of hydrate systems, leading to increased secondary reaction rates and number of NO2 radicals in the CL-20 hydrate compared with the pure CL-20 system. At very high temperatures (T〉2500 K), the dissociation of water molecules competes with the initial thermal decomposition pathway of CL-20, leading to a larger rate constant for the pure CL-20 than for the hydrate CL-20.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第6期1145-1153,共9页 Acta Physico-Chimica Sinica
关键词 CL-20 水分子 热分解 反应路径 催化体系 REAXFF 分子动力学 CL-20 Water molecule Thermaldecomposition Reaction pathway Catalytic system ReaxFF Molecular dynamics
  • 相关文献

参考文献26

  • 1Nielsen, A. T.; Chafun, A. E; Christian, S. L.; Moore, D. W.; Nadler, M. E; Nissan, R. A.; Vanderah, D. J.; Gilardi, R. D.; George, C. F.: Flippen, J. L. Tetrahedron 1998, 54, 11793.
  • 2Li, J.; Bri|l, T. B. Propellants, Explosive, Pyrotechnics 2007, 32 326.
  • 3Tappan, B.; Brill, T. B. Propellants, Explosives, Pyrotechnics2003, 28, 223.
  • 4Simpson, R. L.; Urtiev, P. A.; Omellas, D. L.; Moody, G. L. Scribner, K. J.; Hoffman, D. M. Propellant, Explosives, Pyrotechnics 1997, 22, 249.
  • 5Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.; Leszczynski, J. J. Phys. Chem. A 2005, 109, 2964. doi: 10.1021/ jp045292v.
  • 6Isayev, O.; Gorb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem. B 2008, 112, 11005. doi: 10.1021/jp804765m.
  • 7Zhang, L.; Chen, L.; Wang, C.; Wu, J. Y. Chinese Journal of Explosives & Propellants 2012, 35 (4), 5.
  • 8van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u.
  • 9Han, S.; van Duin, A. C. T.; Goddard, W. A., III; Strachan, A. J. Phys. Chem. B 2011, 115, 6534. doi: 10.1021/jpl I04054.
  • 10Rom, N.; Zybin, S. V.; van Duin, A. C. T.; Goddard, W. A., III; Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115, 10181. doi: 10.1021/jp202059v.

同被引文献206

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部