期刊文献+

基于数据融合的高压输电线接地故障检测方法 被引量:6

Grounding fault detection method of high voltage transmission lines based on data fusion
在线阅读 下载PDF
导出
摘要 针对高压输电线接地故障现象复杂、单参数判断故障检测正确率低的问题,提出一种基于数据融合的输电线路接地故障检测方法。通过分析研究小电流接地系统故障的产生原理,设计了关键参数电压跳变和电流跳变的检测电路,能够迅速捕捉到输电线电流和电压的突变,利用直接检测参数和数据分析数据进行数据融合,设计了基于数据融合的接地故障决策系统,实验数据表明,该方法克服了单个参数判断的局限,提高了输电线路接地故障诊断的正确率。 Aiming at the problems of complex grounding fault phenomena in high voltage transmission line and low correct rate of the grounding fault detection method with single parameter, a grounding fault detection method based on data fusion is proposed. Through analyzing the fault principle in small current grounding system, the detection cir- cuits for the key parameters of voltage jump and current jump are designed, which can quickly capture the voltage jump and current jump in transmission line. These directly detected parameters and the data from data analysis are fused, and the grounding fault decision-making system is designed. Experiment data show that this grounding fault de- tection method based on data fusion overcomes the limitation of detecting grounding fault with single parameter in tra- ditional method and improves the correct recognition rate of grounding fault diagnosis in transmission line.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第5期1139-1145,共7页 Chinese Journal of Scientific Instrument
基金 航空基金(2012ZC52042) 南航基本科研业务费青年科技创新基金(NS2013030)资助项目
关键词 接地故障 输电线 数据融合 模糊神经网络 电流跳变 grounding fault transmission line data fusion fuzzy neural network current jura
  • 相关文献

参考文献12

二级参考文献131

共引文献259

同被引文献66

  • 1杨伟,刘娅琳,吴军基.基于改进遗传算法的配电网故障诊断[J].长沙电力学院学报(自然科学版),2005,20(1):25-30. 被引量:16
  • 2丁同奎,张丽华,陈歆技,库永恒.基于蚁群算法的配电网故障定位与隔离[J].继电器,2005,33(24):29-31. 被引量:13
  • 3陈歆技,丁同奎,张钊.蚁群算法在配电网故障定位中的应用[J].电力系统自动化,2006,30(5):74-77. 被引量:93
  • 4盛戈皞,江秀臣,曾奕,黄成军.架空输电线路运行和故障综合监测评估系统[J].高电压技术,2007,33(8):183-186. 被引量:25
  • 5严太山,陶永芹,崔杜武.基于人类繁殖现象的遗传算法研究[J].计算机工程与应用,2007,43(33):78-81. 被引量:6
  • 6BRUGGEMANN T S, GREER D G,WALKER R A.GPS Fault detection with IMU and aircraft dynamics [ J ].IEEE Transactions on Aerospace and Electronic Systems,2011,47(1) : 305-316.
  • 7PARK S G, JEONG H C, KIM J W,et al. Magneticcompass fault detection method for GPS/INS/magneticcompass integrated navigation systems [ J] . InternationalJournal of Control, Automation, and Systems, 2011,9(2) :276-284.
  • 8TALEBI H A, KHORASANI K, TAFAZOLI S. A recur-rent neural-network-based sensor and actuator fault detec-tion and isolation for nonlinear systems with application tothe satellite ’ s attitude control subsystem [ J ]. IEEETransactions on Neural Networks, 2009,20(1) : 45-60.
  • 9TALEBI H A, KHORASANI K. A neural network-basedmultiplicative actuator fault detection and isolation of non-linear systems[ J]. IEEE Transactions on Control SystemsTechnology, 2013,21(3) :842-851.
  • 10PIRMORADI F N,SASSANI F, DE SILVA C W. Faultdetection and diagnosis in a spacecraft attitude determina-tion system [ J ]. Acta Astronautica,2009, 65 ( 5 -6 ):710-729.

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部