期刊文献+

基于IPSO-BP神经网络的坝基扬压力预测方法研究 被引量:3

Study of Prediction Method of Dam Foundation Uplift Pressure Based on Improved Particle Swarm Optimization-BP Neural Network
在线阅读 下载PDF
导出
摘要 针对坝基扬压力预测的传统BP神经网络模型初始权值和阈值随机性强、易陷入局部最优等局限,采用惯性权重动态调整的改进粒子群算法对BP网络的初始权值和阈值进行优化,建立了基于IPSO的BP神经网络坝基扬压力预测模型.通过算例验证算法的优越性及程序的准确性,并以某大坝多年扬压力监测数据进行工程实例应用,结果表明,IPSO-BP扬压力预测模型与传统BP模型相比,拟合相关系数大,统计误差小,预测精度更高. Initialized weights and thresholds of the traditional BP neural network alogorithm in prediction of dam foundation uplift pressure are random; and it's easily to converge to local optimum. According to this characteristics, particle swarm optimization(PSO) based on dynamic regulation of inertia weight,which has a strong capability of global searching,is utilized to optimize the initialized weights and thresholds of the BP neural network. The prediction model of dam foundation uplift pressure of BP neural network based on im- proved particle swarm optimization(IPSO) is established. The advantage and accuracy of this algorithm is ver- ified by a case study. And the years of uplift pressure monitoring data of a dam foundation is used for evalua- ting the IPSO-BP neural network model. The results show that compared with the traditional BP neural net- work, the prediction of dam foundation uplift pressure model based on IPSO-BP neural network has higher co- efficient correlation, smaller statistical error and better prediction accuracy.
出处 《三峡大学学报(自然科学版)》 CAS 2013年第2期20-24,共5页 Journal of China Three Gorges University:Natural Sciences
基金 国家自然科学基金青年项目(51009056)
关键词 扬压力 BP神经网络 改进粒子群算法 统计模型 uplift pressure BP neural network improved particle swarm optimization statistical model (IPSO)
  • 相关文献

参考文献11

二级参考文献42

  • 1王志旺,张保军,李迪,张漫.大坝变形监测遗传神经网络模型[J].岩土力学,2003,24(S1):130-133. 被引量:6
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:86
  • 3宋汉周,赖诗坤,童海涛.探讨大坝基础局部扬压力异常机理的综合分析方法[J].水力发电学报,2003,22(4):60-66. 被引量:7
  • 4杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:76
  • 5从爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,1998.59-60.
  • 6郑东健.老坝安全评价方法研究[M].南京:河海大学出版社,1999..
  • 7祁庆和.水工建筑物[M].北京:水利水电出版社,1986..
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proceedings of IEEE International Conference on Neural Networks.Perth W A:IEEE service center,1995:1942-1948.
  • 9Shi Yuhui,Eberhart R C.Parameter selection in particle swarm optimization[G] //Evolutionary Programming Ⅶ.Heidelberg:Springer Berlin,1998:591-600.
  • 10Clerc M.The Swarm and Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[C] //Proceedings of Congress on Evolutionary Computation.Washington D C:IEEE service center,1999:1951-1957.

共引文献64

同被引文献26

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部