期刊文献+

顾及特征优化的全极化SAR图像SVM分类 被引量:7

A SVM-based classification method for fully polarimetric SAR imagery considering feature optimization
原文传递
导出
摘要 以支持向量数和相关性分析为评估依据,结合序列前进搜寻策略,本文提出一种顾及特征优化的改进SVM分类方法,并将其应用于全极化SAR图像监督分类。真实数据的实验结果表明,该方法不仅具有小样本情况下的良好泛化性能,而且能以更少的特征个数,在更广泛的SVM参数取值范围内获得更高的分类精度。 An improved SVM classification method for fully polarimetric SAR imagery concerned with feature optimization was pro- posed in this paper, which is based on the assessment of support vector number and correlation analysis, and combining with SFS search strategy. Experimental results showed that the proposed method could not only retain good generalization with limited samples, but also obtain higher classification accuracy with less number of features in a wider range of SVM parameters.
出处 《测绘科学》 CSCD 北大核心 2013年第3期115-117,139,共4页 Science of Surveying and Mapping
基金 国家863计划资助项目(2007AA12Z143) 国家自然科学基金资助项目(40201039 40771157 41001260)
关键词 极化SAR 特征优化 监督分类 支持向量机 polarimetric Synthetic Aperture Radar feature optimization supervised classification Support Vector Machine
  • 相关文献

参考文献14

  • 1周晓光,匡纲要,万建伟.极化SAR图像分类综述[J].信号处理,2008,24(5):806-812. 被引量:27
  • 2吴永辉.极化SAR图像分类技术研究[D].长沙:国防科技大学,2005.
  • 3Vapnik V N. An Overview of Statistical Learning Theory [ C]//IEEE Transactions on Neural Networks, 1999, 10 (5) : 988-999.
  • 4王强,孙洪.基于支持向量机的多极化SAR图像监督分类[J].信号处理,2005,21(z1):531-534. 被引量:5
  • 5吴永辉,计科峰,郁文贤.基于支持向量机的极化SAR图像分类[J].现代雷达,2007,29(6):57-60. 被引量:7
  • 6Lardeux C, Frison P L, Tison C, et al. Support Vector Machine for Multifrequency SAR Polarimetric Data Classi- fication[ C ]//IEEE Transactions on Geoscience and Re- mote Sensing, 2009, 47(12): 4143-4152.
  • 7Liu Huan, Yu Lei. Toward integrating feature selection algorithms for classification and clustering [ J ]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(4) : 491-502.
  • 8何志文,李夕海,刘代志,张斌.基于相关性分析的特征选择方法研究[J].核电子学与探测技术,2005,25(6):729-732. 被引量:11
  • 9Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection [ J ]. Pattern Recognition Letters, 1994, 15:1119-1125.
  • 10Vapnik V N. The Nature of Statistical Learning Theory [M]. Berlin, Springer, 2000.

二级参考文献167

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2徐俊毅,杨健,彭应宁.双波段极化雷达遥感图像分类的新方法[J].中国科学(E辑),2005,35(10):1083-1095. 被引量:9
  • 3L. Xu,P. Yan,T. Chang. Best First Strategy for Feature Selection[ A ]. Proc. Ninth Int' l Conf. Pattern Recognition [ C]. 1988. 706-708.
  • 4J. Yang,V. Honavar. Feature Subset Selection Using A Genetic Algorithm [ J ]. Feature Extraction, Construction and Selection :A Data Mining Perspective. 1998.117-136.
  • 5L. Yu, H. Liu. Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution [ A ]. Proc. 20th Int' l Conf. Machine Learning [ C]. 2003. 856-863.
  • 6Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[ J ] . IEEE Trans. Geosci. Remote Sensing. 2005,43 ( 8 ) : 1699-2005.
  • 7Touzi R. Target scattering decomposition in terms of rollinvariant target parameters [ J ]. IEEE Trans. Geosci. Remote Sensing. 2007,45 ( 1 ).
  • 8Pottier E, Cloude S R. Application of the H/A/α polarimetric decomposition theorems for land classification [ A ]. In : Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry [ C ], San Diego, CA, USA, 1997 : 132-143.
  • 9Qong M. Scattering mechanism identification based on the rotation and eccentric angles of polarimetric SAR data [ A ]. In : Proc. IGARSS' 04 [ C ], Anchorage, AK, USA, 2004 : 3054 -3057.
  • 10Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data [ J ]. IEEE Trans. Geosci. Remote Sensing. 1998,36 ( 3 ) : 963- 973.

共引文献2379

同被引文献52

  • 1李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版),2005,35(4):49-56. 被引量:69
  • 2孙小芳,卢健,孙小丹.城市地区高分辨率遥感影像绿地提取研究[J].遥感技术与应用,2006,21(2):159-162. 被引量:23
  • 3孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5王晅,马建峰.数字图像分析与模式识别[M].北京:科学出版社,2011.
  • 6Schmidt K S, Skidmore A K.Spectral Discrimination of Vegetation Types in a Coastal Wetland[J].Remote Sensing of Environment,2003,85 (1): 92-108.
  • 7Cloude S R.,Pottier E.An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
  • 8Cao F,Wen H,Wu Y.An Unsupervised Segmentation with an Adaptive Number of Clusters Using the SPAN/H/ot/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis [J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):296-299.
  • 9Haralick R M,Shanmugam K,Dinstein I H.Textural Features for Image Classification[J].IEEE Transactions on Systems,Man and Cybernetics, 1973,3 (6) :610 - 621.
  • 10ChapeUe O,Haffner P,Vapnik V N.Support Vector Machines for Histogram-based Image Classification[J].IEEE Transactions on Neural Networks,1999,10(5):1 055-1 064.

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部