期刊文献+

PID控制参数优化在合成氨控制系统中的应用 被引量:2

Application of Synthetic Ammonia Control System Based on Improved Particle Swarm PID Control Parameters Optimization
在线阅读 下载PDF
导出
摘要 在合成氨控制系统性能优化问题的研究中,由于合成氨控制系统的高阶、时变和非线性等特征,引起系统的稳定性差。为解决上述问题,提出了改进粒子群的PID控制参数优化算法。在算法中,首先对PID控制参数的粒子群优化方法进行研究,并进行粒距聚类和粒子信息熵计算;然后依据种群平均信息熵和粒子信息熵进行粒子速度权值映射,并依据粒距聚类度进行权值调整;最后将该算法应用于合成氨控制系统中的脱氧槽液位控制系统仿真。实验证明,改进算法可以较快地达到系统稳态,并具有较强的抗干扰能力,可实现合成氨控制系统的控制系统最优目标。 In order to solve the problem that the control parameter of synthetic ammonia control system has the characteristics of high order, time-varying and nonlinear, this paper put forward an improved PID control parameters optimization algorithm based on particle swarm. In this algorithm, firstly, the PID control parameters of particle swarm optimization methods was studied, and the grain distance clustering and particle information entropy calculation were carried out. Then based on the population average entropy and particle information entropy, the particle velocity right value mapping was implemented, and according to the seed spacing of clustering, the weights were adjusted. Fi- nally, this algorithm was applied to the control system simulation of synthetic ammonia control system of deoxidizing tank level. Experimental results show that this algorithm can fast reach system steady state, and has strong anti-jam- ming ability. KEY-WORDS : Synthetic ammonia ; Particle swarm ; Control parameters ; Automatic control simulation
作者 张春
机构地区 四川民族学院
出处 《计算机仿真》 CSCD 北大核心 2013年第5期366-369,共4页 Computer Simulation
关键词 合成氨 粒子群 控制参数 自动控制仿真 Synthetic ammonia Particle swarm Control parameters Automatic control simulation
  • 相关文献

参考文献8

二级参考文献39

共引文献153

同被引文献17

  • 1韩志刚,蒋爱平,汪国强.合成氨生产中的氢氮比控制系统[J].控制理论与应用,2005,22(5):762-766. 被引量:4
  • 2Shi Y,Eberhart R C. A modified particle swarm optimi- zer[C]//Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence. , The 1998 IEEE International Conference. Anchorage, AK: IEEE, 1998 : 69-- 73.
  • 3ZHAN Zhi--Hui, ZHANG Jun, LI Yun, et al. Adaptive particle swarm optimization[J]. IEEE Transactions On Systems Man And Cybernetics Part B--cybernetics, 2009,39 : 1362-- 1381.
  • 4Khare A,Rangnekar S. A review of particle swarm op- timization and its applications in SolarPhotovoltaic sys- tem[J]. Applied Soft Computing, 2013, 13:2997 --3006.
  • 5Valdez F, Melin P, Castillo O. An improved evolution- ary method with fuzzy logic for combining particle swarm optimization and genetic algorithms[J]. Applied Soft Computing,2011 ,11 :2625--2632.
  • 6Marinakis Y, Marinaki M. Particle swarm optimization with expanding neighborhood topology for the permu- tation flowshop scheduling problem[J]. Soft Compu- ting, 2013,17 : 1159-- 1173.
  • 7申元霞,王国胤,曾传华.相关性粒子群优化模型[J].软件学报,2011,22(4):695-708. 被引量:21
  • 8韩学政,王承信,杨中国,李帅.合成氨生产中氧含量控制系统的改进[J].现代化工,2011,31(5):86-87. 被引量:1
  • 9高卫峰,刘三阳.一种高效粒子群优化算法[J].控制与决策,2011,26(8):1158-1162. 被引量:27
  • 10孙晓岩,夏力,项曙光.合成氨装置控制系统仿真[J].计算机仿真,2012,29(1):364-368. 被引量:3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部