期刊文献+

一类基于动态优化问题的混沌猴群算法 被引量:2

Chaotic Monkey Algorithm for a Class of Dynamic Optimization Problems
在线阅读 下载PDF
导出
摘要 在混沌猴群算法(Chaotic monkey algorithm,CMA)的思想上,通过选用一个遍历性更好的混沌函数代替了原算法中的Logistic函数,并设计了一种适用于求解动态规划问题的智能算法。先对CMA进行了介绍,接着给出了一类动态优化问题的模型,并将该模型离散化为一类多维函数优化问题,给出了求解各过程的详细步骤和数值例子,说明上述方法的可行性和有效性。 Based on CMA,a chaotic function was used to solve a class of dynamic optimization problems,which has better than the Logistic function. After given the brief introduction of CMA, a class of dynamic optimization model was proposed. The class of model was discretized into a multidimensional optimization problem and then processes for solving the problem were given. To testify the feasibility and the effectiveness, one numerical example was presented.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第2期164-167,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(70971092)
关键词 动态优化 智能算法 混沌猴群算法 混沌函数 dynamic optimal intelligent algorithm chaotic monkey algorithm chaotic function
  • 相关文献

参考文献13

  • 1HOLLAND J H. Adaptation in natural and artificial systems [ M ]. Michigan: University of Michigan Press, 1975 : 12 - 98.
  • 2CHANG T J ,YANG S C, CHANG K J. Portfolio optimi- zation problems in different risk measures using genet- ic algorithm [ J ]. Expert Systems with Applications, 2009,36 (7) : 10529 - 10537.
  • 3IP W H, HUANG M, YUNG K L, et al. Genetic algo- rithm solution for a risk - based partner selection problem in a virtual enterprise [ J ]. Computers & Op- erations Research,2003,30 (2) :213 - 231.
  • 4WU Q H, CAO Y J,WEN J Y. Optimal reactive power dispatch using an adaptive genetic algorithm [ J ]. In- ternational Journal of Electrical Power Energy Sys- tems, 1998,20 (8) : 563 - 569.
  • 5KENNEDY J, EBERHART R C. Particle swarm optimi- zation[ C ]//IEEE International Conference on Neural Networks. Perth: [ s. n. ], 1995 : 1942 - 1948.
  • 6HAGAN M T, DEMUTH H B. Neural networks for con- trol[ C ]//Proceedings of the 1999 American Control Conference. [ S. 1. ] : [ s. n. ], 1999 : 1642 - 1656.
  • 7HOPFIELD J J. Neural networks and physical systems with emergent collective computational properties [C]//Proceedings of the National Academy of Sci- ences. [S. 1. ]:[s. n. ] ,1982:2554 -2558.
  • 8ZHAO R Q, TANG W S. Monkey algorithm for global numerical optimization [ J ]. Journal of Uncertain Sys- tems,2008,2 ( 3 ) : 164 - 175.
  • 9赵瑞清,郝士鹏.一类新的模糊约束满足问题的建模与求解[J].系统工程学报,2010,25(3):415-420. 被引量:5
  • 10赵涛,夏雨,宗玛利.基于猴群算法的加气站项目进度研究[J].价值工程,2010,29(8):90-92. 被引量:7

二级参考文献49

  • 1胡家声,郭创新,叶彬,段惠明,曹一家.离散粒子群优化算法在输电网络扩展规划中的应用[J].电力系统自动化,2004,28(20):31-36. 被引量:42
  • 2金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:90
  • 3王秀丽,王锡凡.遗传算法在输电系统规划中的应用[J].西安交通大学学报,1995,29(8):1-9. 被引量:61
  • 4YING CHIEH FANG, CHIUH CHENG CHYU. Proceedings of The 9th Asia Pasific Industrial Engineering & Management Systems Conference [C]//A population learning algorithm for the time/cost trade-offs resource constrained project scheduling problem,2008, Nusa Dua, Bali Indonesia: Asia pacific industrial engineering and management society,2008:459-466.
  • 5Liu Baoding. Theory and practice of uncertain programming [M]. Heidelberg: Physiea-Verlag.2002.
  • 6Liu Yankui, and Liu Baoding. Expected value operator of random fuzzy variable and random fuzzy expected value models [J], International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, 2003, 11 (2),195-215.
  • 7Liu Baoding, and Liu Yankui. Expected value of fuzzy variable and fuzzy expected value models [J], IEEE Transactions on Fuzzy Systems, 2002, 10 (4), 445-450.
  • 8Zhao Ruiqing, Tang Wansheng. Monkey algorithm for global numerical optimization[J], Journal of Uncertain Systems. 2008, 2(3), 165-176.
  • 9Latorre G,Cruz R D,Areiza J M,et al.Classification of publications and models on transmission expansion planning[J].IEEE Transactions on Power Systems,2003,18(2):938-946.
  • 10Romero R,Monticelli A,Garcia A,et al.Test systems and mathematical models for transmission network expansion planning[J].IEE Proceedings:Generation,Transmission and Distribution,2002,149(1):27-36.

共引文献32

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部