摘要
针对网购评论,抽取评论语组成基本语料,构建客户网购评论情感词汇本体,对热点评论应用k-近邻和SVM 2种算法来分析评论文本热点事件,实验证实SVM算法较k-近邻算法在评论文本热点发现上具有较高的性能,为网购评语热点研究提供了实例参考.
Based on the basic corpus composed of comment extracts from online - shopping, the thesis builds a voabulary database of customers' attitudes towards the online - shopping comments. The comments on the hot events are analyzed by applying k - nearest neighbor and SVM algorithm. The result shows that SVM algorithm is better than k -nearest in this aspect, which provides reference for studying on the online -shopping comments.
出处
《云南民族大学学报(自然科学版)》
CAS
2013年第3期209-212,共4页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(08XMZ002)
关键词
网购评论
K近邻
SVM算法
意见挖掘
online -shopping comments
k -nearest neighbor
SVM algorithm
opinion mining