期刊文献+

网购评论情感数据的k近邻和SVM处理方法研究 被引量:3

Research on online-shopping sentiment based on k-nearest neighbor and SVM algorithm
在线阅读 下载PDF
导出
摘要 针对网购评论,抽取评论语组成基本语料,构建客户网购评论情感词汇本体,对热点评论应用k-近邻和SVM 2种算法来分析评论文本热点事件,实验证实SVM算法较k-近邻算法在评论文本热点发现上具有较高的性能,为网购评语热点研究提供了实例参考. Based on the basic corpus composed of comment extracts from online - shopping, the thesis builds a voabulary database of customers' attitudes towards the online - shopping comments. The comments on the hot events are analyzed by applying k - nearest neighbor and SVM algorithm. The result shows that SVM algorithm is better than k -nearest in this aspect, which provides reference for studying on the online -shopping comments.
出处 《云南民族大学学报(自然科学版)》 CAS 2013年第3期209-212,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(08XMZ002)
关键词 网购评论 K近邻 SVM算法 意见挖掘 online -shopping comments k -nearest neighbor SVM algorithm opinion mining
  • 相关文献

参考文献10

  • 1姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述[J].中文信息学报,2008,22(3):71-80. 被引量:107
  • 2侯锋,王传廷,李国辉.网络意见挖掘、摘要与检索研究综述[J].计算机科学,2009,36(7):15-19. 被引量:3
  • 3陈建美,林鸿飞,杨志豪.基于语法的情感词汇自动获取[J].智能系统学报,2009,4(2):100-106. 被引量:27
  • 4中国科学院.ICTCLAS汉语分词系统[EB/OL].[2012-12 - 20] . http://www. ictclas. org.
  • 5宗成庆.统计自然语言处理[M].北京:清华大学出版社,2010:346 -350.
  • 6COUSSEMENT K,van den POEL D. Improving customercomplaint management by automatic email classification u-sing linguistic style features as predictors[ EB/OL]. [2012-12 -25] http://www. sciencedirect. com/science/arti-cle/pii/S0167923607001820.
  • 7FANG Yuan,LIU Yang. A new density - based method forreducing the amount of training data in KNN text classifica-tion [C]//International Conference on Machine Learningand Cybernetics. Hong Kong, 2007:3372 -3375.
  • 8BRANAVAN S R K,CHEN H,EISENSTEIN J, et a].Learning document - level semantic properties from free -text annotations[ J]. Journal of Artificial Intelligence Re-search, 2009, 34(2) : 569.
  • 9DU H,CHEN Y Q. Rectified nearest feature line seg-ment for pattern classification [ J]. Pattern Recognition,2007, 40(5) : 1486 -1497.
  • 10GUAN Q,YE S,YAO G,et al. Research and design ofinternet public opinion analysis system [ C] //ServicesScience,Management and Engineering,2009,IITA In-ternational Conference on. IEEE, 2009 : 173 - 177.

二级参考文献43

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625.
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 4姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281.
  • 5S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions [A]. In: Proceedings of COLING-04, the Conference on Computational Linguistics (COLING-2004) [C]. Geneva, Switzerland: 2004, 1367-1373.
  • 6J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment Analyzer; Extracting Sentiments about a Given Topic using Natural Language Processing Techniques [A]. In: Proceedings of the 3rd IEEE International Conference on Dala Mining (ICDM-2003) [C]. Melbourne, Florida: Z003, 427-434.
  • 7M. Hu and B. Liu. Mining Opinion Features in Cus tomer Reviews [A]. In: Proceedings of Nineteeth Na tional Conference on Artificial Intellgience (AAAI 2004) [C]. San Jose, USA: 2004.
  • 8A. M. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews [A]. In: Proceedings of HI.T EMNLP-05, the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing [C]. Vancouver, Canada.. 2005, 339-346.
  • 9X. Cheng. Automatic Topic Term Detection and Sentiment Classification for Opinion Mining [D]. Master Thesis. Saarbr cken, Germany: The University of Saarland, 2007.
  • 10S. Bethard, H. Yu, A. Thornton, V. Hatzivassiloglou, and D. Jurafsky. Automatic Extraction of Opinion Propositions and their Holders [A]. In.. J. G.Shanahan et al. (eds). Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications [C]. Stanford, USA: 2004.

共引文献131

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部