期刊文献+

一个带时延神经网络的分岔现象研究 被引量:6

STUDY OF BIFURCATION PHENOMENON FOR A NEURAL NETWORK WITH TIME DELAY
在线阅读 下载PDF
导出
摘要 本文借助中心流形定理详细讨论了一个带时延神经网络的Hopf分岔和周期解的渐近稳定性,给出了确定周期解的渐近稳定性。分岔方向、周期和解的渐近形式的一个算法,并进行了计算机仿真实验,仿真实验表明了所讨论的结果的有效性与正确性。 In this paper, Hopf bifurcation of a neural network with time delay is discussed in detail. The stability of periodic solutions is also studied by utilizing center manifold theorem. Algorithms for determining the asymptotic stability, direction of bifurcation, period, and asymptotic form of these solutions are presented. All of the theoretical analyses are testified by computer simulations.
出处 《电子科学学刊》 CSCD 2000年第6期972-977,共6页
基金 中国博士后基金
关键词 带时延神经网络 Hopf分岔现象 周期解 中心流形 Neural network with time delay, Hopf bifurcation, Asymptotic stability of periodic solutions, Center manifold
  • 相关文献

参考文献6

  • 1Liao X F,International Journal of Circuit Theory and Applications,1998年,26卷,2期,219页
  • 2Liao X,Journal of Electron,1997年,14卷,4期,345页
  • 3Zhang Y,Int J Syst Sci,1996年,27卷,2期,227页
  • 4Zhang Y,Int J Syst Sci,1996年,27卷,9期,895页
  • 5Chua L O,IEEE Trans.CAS,1993年,40卷,3期,147页
  • 6Zou F,IEEE Trans.CAS,1993年,40卷,3期,166页

同被引文献26

  • 1CAO Y J,WU Q H. A note on stability of analog neural networks with time delays[J].IEEE Trans on Neural Networks, 1996, 7(4) :1533 - 1535.
  • 2WEI Junjie, RUAN Shigui, Stability and bifurcation in a neural network model with two delays [ J ]. Physica D, 1999, 130 ( 3 ) :255 - 273.
  • 3HASSARD B D, KAZARINOFF W D, WAN Y H. Theory and Application of Hopf Bifurcation [ M ]//London Math Soc.England: Cambrige University Press, 1982, Note Serives 41.
  • 4KAREN L, SARAH D, GARY P. Gait evolution for a hexapod robot[A]. Proceedings of the 4th International Symposium on Soft Computing and Intelligent Systems for Industry (SOCO / ISFI 2001 )[C]. June 2001.
  • 5KLAVINS E, KODITSCHEK D E, GHRIST R. Toward the regulation and composition of cyclic behaviorst[A]. 4th International Workshop on Algorithmic Foundations of Robotics, Dartmouth College, NH, March 2000[C].
  • 6HIROSHI K, YASUHIRO F, YOSHIRO H, KUNIKATSU T, Three-dimensional Adaptive Dynamic Walking of a Quadrupedrolling motion feedback to CPGs controlling pitching motion, Proc. of IEEE Robotics and Automation (ICRA2002), Washington D.C., 2002:2228-2233.
  • 7LUO Z W, ODASHIMA T, ASANO F, HOSOE S. On recent bio-mimetic studies of legged locomotion- diversity, adaptability and energy consumption for hexapod, quadruped and Biped[A]. Proc. of the 2nd International Symposium on Adaptive of Animals and Machines[C]. Kyoto, Mar. 2003-5- 15.
  • 8KUNICHIKA T, TETSUYA Y, KAZUYUKI A, HIROSHI K. Bifurcation in Morris-Lecar. Neuron Model[A]. Proc. of the International Symposium on Nonlinear Theory and Its Applications[C]. Xi'an, PRC. Oct,7,2002
  • 9HIROFUMI N. Generation and transitions of phase-locked oscillations in coupled neural oscillators[A]. Proceeding of World Multiconference on Systemics, Cybernetics and Informatics SCI2001/ISAS2001 [C]. 2001.
  • 10LAKSHMANAN M, MURALI K. Chaos in nonlinear oscillators[J]. Singapore: World Scientific, 1996.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部