期刊文献+

一种基于优质边求解TSP的蚁群算法 被引量:2

Ant colony algorithm based on quality edge to solve TSP
在线阅读 下载PDF
导出
摘要 应用蚁群算法求解旅行商问题时发现,算法易陷入局部最优解而停滞,并导致其探索新解能力的降低。提出了一种基于优质边的求解方法,根据算法运行过程中的相关信息选取优质边,在停滞时调整优质边上的信息素;使用改进的选路规则将蚂蚁的路径选择尽可能限制在优质边中,从而改进蚂蚁构造解的质量以增强算法的探索能力。实验结果表明,改进的策略是合理有效的。 On the research of ant colony algorithm to the Traveling Salesman Problem shows that it can easily fall into the local optimal solution, leading to lower ability to explore better solutions. This paper proposes a solving approach which based on the quality edge to solve this problem. Choose the quality edge according to the information from the algorithm. While the algorithm is in stagnation, adjust the pheromone on quality edge, it will enhance the ability of algorithm to explore better solutions. At the same time, improved routing rules will limit the ant to choose the quality edge as much as possible, thereby improving the quality of solution. The experiment results show that the improved solution strategy is reasonable and effective.
出处 《计算机工程与应用》 CSCD 2013年第10期32-34,187,共4页 Computer Engineering and Applications
关键词 蚁群优化 旅行商问题 最大-最小蚁群算法 智能计算 优质边 Ant Colony Optimization(ACO) Traveling Salesman Problem(TSP) Max-Min Ant System(MMAS) intelligent computation quality edge
  • 相关文献

参考文献9

  • 1Cook W J.Combination optimization[M].New York:Wiley- Interseience, 1998 : 241-272.
  • 2Cook W J.In pursuit of the traveling salesman[M].Princeton: Princeton University Press, 2011 : 146-153.Programming, 1971,1:6-25.
  • 3Held M, Karp R M.The traveling salesman problem and mini- mum spanning trees : part II[J].Mathematical.
  • 4Tucker M A W, Zemlin R A.Integer programming formulation on traveling salesman problems[J].Journal of the Association for Computing Machinery, 1960,7 : 326-329.
  • 5Dorigo M, Stutule T.Ant colony optimization[M].Massachu- setts:The MIT Press,2004:65-120.
  • 6Dorigo M, Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) : 53-66.
  • 7Stutzle T, Hoos H H.Max-Min ant system[J].Journal of Future Generation Computer Systems, 2000, 16(9) : 889-914.
  • 8EngelbrechtAP计算智能导论[M].北京:清华大学出版社,2010:273-292.
  • 9段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:217

二级参考文献3

共引文献218

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部