期刊文献+

粒子群分形进化算法

Fractal Evolutionary Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 在传统粒子群优化(PSO)算法的基础上,提出粒子群分形进化算法(FEPSO).FEPSO利用分形布朗运动模型中的无规则运动特性模拟优化目标函数未知特性,隐含的趋势变化模拟优化目标函数极值变化的总趋势,从而克服个体过于随机进化和早熟的现象.与传统的PSO算法相比,文中算法中每个粒子包含分形进化阶段.在分形进化阶段,粒子在解的子空间以不同的分形参数进行分形布朗运动方式搜索解空间,并对其分量进行更新.仿真实验结果表明,该算法对大部分标准复合测试函数都具有较强的全局搜索能力,其性能超过国际上最近提出的基于PSO的改进算法. Based on the classic particle swarm optimization (PSO) algorithm, a fractal evolutionary particle swarm optimization (FEPSO) is proposed . In FEPSO, the charactristic of the irregular motion of fractal Brownian motion model is used to simulate the optimization process varying in unknown mode, and its implied trend part is applied to simulate the optimization index of the global objective function optimum change. Therefore, the individual evolution process is prevented from going too randomly and precociously. Compared with the classic PSO algorithm, a fractal evolutionary phase is included for each particle in FEPSO. In this phase, each particle simulates a fractal Brownian motion with different Hurst parameter to search the solution in sub dimensional space, and its corresponding sub position is updated. The results of simulation experiments show that the proposed algorithm has a robust global search ability for most standard composite test functions and its optimization ability performs better than the recently proposed improved algorithm based on PSO.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第4期344-350,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60674054) 江西省自然科学基金项目(No.2010GZS0090)资助
关键词 进化算法 粒子群优化 分形布朗运动 Evolutionary Algorithm, Particle Swarm Optimization, Fractal Brownian Motion
  • 相关文献

参考文献1

二级参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization// Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 2Shi Y, Eberhart R C. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 1011-106.
  • 4Clerc M. The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization//Proceedings of the Congress on Evolutionary Computation, 1999: 1951-1957.
  • 5Corne D, Dorigo M, Glover F. New Ideas in Optimization. McGraw Hill, 1999:379-387.
  • 6Angeline P J. Using selection to improve particle swarm optimization//Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences//Proceedings of the 7th Annual Conference on Evolutionary Programming. Germany, 1998:601-610.
  • 8Suganthan P N. Particle swarm optimizer with neighborhood topology on particle swarm performance//Proeeedings of the 1999 Congress on Evolutionary Computation, 1999: 1958- 1962.
  • 9Kennedy J. Small worlds and Mega-minds: Effects of neighborhood topology on particle swarm performance//Proceedings of the Congress on Evolutionary Computation, 1999 1931-1938.
  • 10Peram T, Veeramachaneni K, Mohan C K. Fitness-distanceratio based particle swarm optimization//Proeeedings of the Swarm Intelligence Symposium. Indianapolis, Indiana, USA, 2003: 174-181.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部