期刊文献+

周期广义谐和小波变换及重构 被引量:8

Periodic generalized harmonic wavelet transformation and reconstruction
在线阅读 下载PDF
导出
摘要 谐和小波和广义谐和小波皆为在频域上紧支且时域为无穷的正交小波,其频域分辨率很好但时域分辨率较差。虽然谐和小波在无穷时域上具有正交性,但其正交性在有限时域上却无法体现。针对这个缺点,在广义谐和小波的基础上,将广义谐和小波周期化后,进而提出了一种周期广义谐和小波(Periodic Generalized Harmonic Wavelet,PGHW)。PGHW的母小波在时域中可以表达为经平移后的若干谐和项之和,在频域中表现若干δ函数之和,为一种以待分析信号持时为基本周期且在其上正交的离散广义谐和小波。基于PGHW在频域内的简单性,利用快速Fourier变换(FFT)技术实现了PGHW的快速小波变换及逆变换。最后的算例给出了某人工合成地震波的周期广义谐和小波变换及其重构,说明了所提算法的高效性与PGHW的完全重构性。 The periodic generalized harmonic wavelet (PGHW) and the algorithms for its fast wavelet transformation (FWT) and inverse fast wavelet transformation (iFWT) are presented here. The PGHW can be represented as a sum of several translated harmonic terms in time domain, and a sum of several σ functions in frequency domain. Compared to the generalized harmonic wavelet (GHW) and the harmonic wavelet (HW), the PGHW is orthogonal and periodic, while the former lose the orthogonality in a finite time interval. Considering the simplicity of the PGHW in frequency domain, its FWT and iFWT are developed via the fast Fourier transformation (FFT) technique. Numerical examples demonstrated the computational efficiency of the algorithms and the perfect reconstruction of the PGHW.
作者 孔凡 李杰
出处 《振动与冲击》 EI CSCD 北大核心 2013年第7期24-29,共6页 Journal of Vibration and Shock
基金 国家自然科学基金委创新研究群体科学基金(50621062)
关键词 谐和小波 正交性 小波变换 快速FOURIER变换 重构 harmonic wavelet orthogonality wavelet transformation fast Fourier transformation reconstruction
  • 相关文献

参考文献26

  • 1Grossmann A, Morlet J. Decomposition of Hardy function into square intergrable wavelets of constant shape [ J]. Journal on Mathematical Analysis, 1984, 15 : 725 -756.
  • 2Meyer Y. Principe d' incertitude, bases hilbertiennes et a|gebres d' op6rateurs [ J]. Seminaire Bourbaki, 1985, 622 : 1985 - 1986.
  • 3Meyer Y. Ondelettes et operateurs, I. Ondelettes [ M ]. Paris: Hermann, 1990.
  • 4Mallat S. Muhiresolution approximations and wavelet orthonormal bases of I2 ( R ) [ J ]. Transactions of the American Mathematical Society, 1989, 315 ( 1 ) : 69 - 87.
  • 5Daubechies I. Ten lectures on wavelets [ M ]. Philadelphia: Society for Industrial and Applied Mathematics, 1992.
  • 6Coifman R R. Wavelet analysis and signal processing, signal processing part I[ M ]. Springer-Verlag, 1990:59 - 68.
  • 7Chui C K. An introduction to wavelets [ M ]. San Diego: Academic Press Professional, Inc, 1992.
  • 8Newland D E. An introduction to random vibrations, spectral and wavelet analysis [ M ]. New York: Longman Scientific & Technical, 1993.
  • 9Newland D E. Harmonic and musical wavelets [ J ]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1994, 444(1922) : 605 - 620.
  • 10Newland D E. Harmonic wavelet analysis [ J ]. Proceedings of the Royal Society of London. Series A : Mathematical and Physical Sciences, 1993,443 (1917) : 203 - 225.

同被引文献62

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部