期刊文献+

奶牛布鲁氏菌病的动力学分析 被引量:3

The Dynamic Analysis of Dairy Cattle Brucellosis
在线阅读 下载PDF
导出
摘要 结合我国奶牛布鲁氏菌病的现状以及疾病自身的特点,考虑环境当中病菌项的传染,分析并建立了具有外界引入以及剔除等措施的奶牛布鲁氏菌病动力学模型.从理论上求出了系统的基本再生数,分析了各平衡点的存在性和局部稳定性.通过谱半径方法以及构造适当的Lyapunov函数证明了无病平衡点和唯一的正平衡点全局渐进稳定. Combining the current situation of Dairy cattle brucellosis in our country with Brucellosis own characteristics,and Considering the bacteria infection of the environment,the Dairy cattle brucellosis dynamical model was formulated with outer importing and excluding measures.The basic reproductive rate was calculated theoretically.The existence of equilibrium points and local stability were analyzed theoretically.By using the method of spectral radius and constructing appropriate Lyapunov functions,it draws the conclusion that the disease-free equilibrium and the unique endemic equilibrium are global asymptotic stability.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第2期93-97,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11171314 11147015) 山西省自然科学基金资助项目(2010011007)
关键词 奶牛布鲁氏菌病 基本再生数 稳定性 dairy cattle brucellosis basic reproductive rate stability
  • 相关文献

参考文献15

二级参考文献39

共引文献140

同被引文献28

  • 1文学忠,于瑞华,姜秋杰.布鲁氏菌病近况[J].吉林畜牧兽医,2007,28(5):20-23. 被引量:19
  • 2周义仓 靳祯 秦军林.常微分方程及其应用[M].北京:科学出版社,2003..
  • 3李明涛,孙桂全,靳祯.具有阶段结构的羊群布鲁氏菌病动力学分析[J].中国科技论文在线精品论文,2014,7(1):52-57.
  • 4Gonzlez-Guzmdn J, Naulin R. Analysis of a model of bovine Brucellosis using singular perturbation[J]. Journal of Mathematical Biology, 1994, 33(2): 211-223.
  • 5Hou Q, Sun X D, Zhang J. Modeling the transmission dynamics of sheep Brucellosis in Inner Mongolia Autonomous Region, China[J]. Mathematical Biosciences, 2013, 242(1): 51-58.
  • 6Zhang J, Sun G Q, Sun X D, et al. Prediction and control of Brucellosis transmission of dairy cattle in Zhejiang province, China[J]. PLoS One, 2014, 9(11): e108592.
  • 7van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for com- partmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1): 29-48.
  • 8Diekmann O, Heesterbeek J A P, Metz J A J. On the definition and the computation of the basic repro- duction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28(4): 365-382.
  • 9Thieme H. Convergence results and a Poincar&Bendixson trichotomy for asymptotically autonomous dif- ferential equations[J]. Mathematical Biosciences, 1992, 30(7): 755-763.
  • 10Wang W D, Zhao X Q. An epidemic model in a patchy environment[J]. Mathematical Biosciences, 2004, 190(1): 97-112.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部