期刊文献+

关于一个多项式序列的对称关系 被引量:4

Symmetric Relations Involving a Sequence of Polynomials
在线阅读 下载PDF
导出
摘要 研究了一个与广义Bernoulli多项式、高阶Apostol-Bernonlli多项式和高阶Apostol-Euler多项式相关的多项式序列.运用组合技巧建立了该多项式序列与幂和之间的两个对称关系. A sequence of polynomials tol-Bernoulli polynomials and higher associated with generalized Bernoulli order Apostol-Euler polynomials are techniques, two symmetric relations between such a lished. As applications, some corresponding results polynomials,higher order Apos-studied. By using combinatorial sequence of polynomials and sums of powers are estab-in the references are obtained as special cases.
作者 何圆 张文鹏
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期28-30,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金(11071194) 陕西省自然科学基础研究基金(2009JM1006) 西北大学优秀博士学位论文基金(09YYB05)
关键词 广义Bernoulli多项式 Apostol-Bernoulli多项式 Apostol-Euler多项式 幂和 generahzed 15ernoulh polynomials Apostol-Bernoulli polynomials Apostol-Euler polynomials sums of powers
  • 相关文献

参考文献8

  • 1LANG S. Cyclotomic Fields [M]. New York: Springer-Verlag, 1978.
  • 2GESSELL I. Solution to Problem E3237 [J]. Amer Math Monthly, 1989, 96: 364.
  • 3HOWARD F T. Applicaions o{ a Recurrence for the Bernoulli Numbers [J]. J Number Theory, 1995, 52: 157-172.
  • 4TUENTER H J H. A Symmetry of Power Sum Polynomials and Bernoulli Numbers [J]. Amer Math Monthly, 2001, 108: 258-261.
  • 5YANG Sheng-liang. An Identity of Symmetry for the Bernoulli Polynomials [J]. Discrete Math, 2008, 308(2): 550-554.
  • 6ZHANG Zhi-zheng, YANG Han-qing. Several Identities for the Generalized Apostol-Bernoulli Polynomials [J]. Comp Math Appl, 2008, 56: 2993-2999.
  • 7LUO Qiu-ming, SRIVASTAVA H M. Some Generalizations of the Apostol-Bernoulli and Apostol-Euler Polynomials [J]. J Math AnalAppl, 2005, 308: 290-302.
  • 8NORLUND N E. Vorlesungen Uber Differnzenrechnung [M]. Berlin: Springer-Verlag, 1924.

同被引文献41

  • 1张文鹏.ON THE SEVERAL IDENTITIES OF RIEMANN ZETA-FUNCTION[J].Chinese Science Bulletin,1991,36(22):1852-1856. 被引量:1
  • 2Chen K W. Sums of products of Generalized Bernoulli polynomials[J]. Pacific Journal of Mathematics, 2003,208 (1): 39-52.
  • 3Szmidt J, Urbanowicz J, Zagier D. Congruences among generalized Bernoulli numbers [J]. ACTA ARITHMETICA, LXXI, 1995 (3) : 273-278.
  • 4Ireland K,Rosen M. A Classical Introduction to Modern Number Theory [M]// 2th ed. Graduate Texts in Mathemat- ics, Vol. 84. New York : Springer, 1990 : 237.
  • 5Kummer E E. Uber eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen [J]. J Reine Angew Math,185(41):368-372.
  • 6Pan H,Zhang Y. Stern's type congruences for L(-k,x)[J]. arXiv:ll01. 4806v2 [-math. NT] 29 Apr 2013.
  • 7Yuan Y. Some identities involving Bernoulli numbers and Euler numbers [J]. Scientia Magna,2006,2(1):102-107.
  • 8Rademacher H. Topics in Analytic Number Theory [M]. New York : Springer-Verlag, 1973 : 12.
  • 9Tom M Apostol. Introduction to Analytic Number Theory [M]. New York:Springer-Verlag,1976:265.
  • 10Liu G,Luo H. Some identities involving Bernoulli numbers [J]. The Fibonaeci Quarterly,2005,43 (3) : 208-212.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部