期刊文献+

水–火–风协调优化的全景安全约束经济调度 被引量:37

A Full-scenario SCED With Coordinative Optimization of Hydro-thermal-wind Power
原文传递
导出
摘要 风电出力的不确定性给传统的安全约束经济调度(security constrained economic dispatch,SCED)方法带来了很大的挑战。为了协调调度水电、火电和风电等多种电源,提出了水–火–风协调优化的全景SCED方法。该方法用区间数表示风电的波动范围,统一优化备用需求与机组出力;考虑机组跟踪负荷能力以及调度的公平性,经济、公平地预留各机组备用,以应对风电波动。针对含区间数模型的复杂性,提出关键场景的识别方法,形成以关键场景为约束、不损失优化精度的模型,显著减小了模型规模,使其能够高效地得到求解。基于电网实际数据的算例验证了所提出的方法在解决风电波动问题方面的高效性与科学性。 The volatility and intermittence of wind power brings a great challenge to the traditional security constrained economic dispatch (SCED). To dispatch the hydro power, thermal power and wind power coordinately, a full-scenario SCED method with coordinative optimization of hydro-thermal-wind power was proposed. By using interval numbers to cover the range Of wind power fluctuation, the method unified the optimization of power output of traditional generation units and their spinning reserve for wind power fluctuation. Meanwhile, different ramp capability of hydro and thermal units was considered so that spinning reserve was allocated fairly and economically. Since the original model with interval numbers is complicated to solve, an identification method for critical scenarios was proposed. By the identification of critical scenarios, the original model was simplified based on critical scenario constraints without loss of accuracy so that the coordinative optimization was accelerated. Based on the practical data of a provincial power grid, the numerical exper/ment results show that the proposed method is effective and practical.
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第13期2-9,共8页 Proceedings of the CSEE
基金 国家自然科学基金项目(51007032) 山东电网科技项目(含大规模风电接入的电网发电调度模式与关键性技术研究与应用)~~
关键词 风电 全景 安全约束经济调度 协调优化 wind power full-scenario security constrained economic dispatch coordinative optimization
  • 相关文献

参考文献15

  • 1Lee Tsung-Ying. Optimal spinning reserve for a wind-thermal power system using EIPSO[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1612-1621.
  • 2Chakrabarti B B . Modeling of wind generation fluctuations in a dispatch model[C]//IEEE Power India Conference. New Delhi, India: IEEE, 2006: 188-193.
  • 3Jabr R A, Pal B C. Intermittent wind generation in optimal power flow dispatching[J]. IET Generation, Transmission &Distribution, 2009, 3(1): 66-74.
  • 4Hetzer J, Yu D C, Bhattarai K. An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 603-611.
  • 5Liu Xian, Xu Wilsun. Economic load dispatch constrained by wind power availability: a here-and-now approach[J]. IEEE Transactions on Sustainable Energy, 2010, 1(1): 2-9.
  • 6Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(2): 306-316.
  • 7Soder L Reserve margin planning in a wind-hydro-thermal power system[J]. IEEE Transactions on Power Systems, 1993, 8(2): 564-571.
  • 8Liu K, Zhong J. Generation dispatch considering wind energy and system reliability[C]//Power and Energy Society General Meeting. Minneapolis, USA: IEEE PES, 2010: 1-7.
  • 9Wang Lingfeng, Singh C. Tradeoffbetween risk and cost in economic dispatch including wind power penetration using particle swarm optimization[C]//International Conference on Power System Technology. Chongqing, China: IEEEPES, 2006: 1-7.
  • 10Miranda V, Hang P S. Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers[J]. IEEE Transactions on Power Systems, 2005, 20(4): 2143-2145.

二级参考文献21

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:592
  • 2刘永前,韩爽,杨勇平,高辉.提前三小时风电机组出力组合预报研究[J].太阳能学报,2007,28(8):839-843. 被引量:21
  • 3Garrad Hassan&Partners Ltd. Forecasting Short- Term Wind Farm Production. http: //www. garradhassan.com.
  • 4Peter Coppin, Jack Katzfey. The Feasibility of Wind Power Production Forecasting in the Australian Con text [R]. CSIRO Atmospheric Research. Report to: National Electricity Market Management Company Limited, 2003, 12.
  • 5The ANEMOS Project: next generation forecasting of wind power, http: //anemos. cma. fr.
  • 6Thanasis G Barbounis, John B Theochairs, Minas C. Alexiadis, et al. Long-term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models [J]. IEEE Transactions on Energy Conversion, 21 (1), 2006, 3.
  • 7Landberg L. Short-term Prediction of Local Wind Conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89: 235-245.
  • 8Landberg L. Short-term Prediction of the power produc tion from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999; 80: 207 - 220.
  • 9Pinson P, Siebert N, Kariniotakis G. Forecasting of Regional Wind Generation by a Dynamic Fuzzy-Neural Networks Based Upscaling Approach[C].European Wind Energy Conference&Exhibition EWEC 2003, Madrid.
  • 10George Kariniotakis. Next Generation Short-term Forecasting of Wind Power-Overview of the Anemos Project[C].European Wind Energy Conference, Athens, 27 Feb. -2 Mar. 2006.

共引文献71

同被引文献441

引证文献37

二级引证文献985

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部