期刊文献+

Solutions of second order degenerate integro-differential equations in vector-valued function spaces 被引量:4

Solutions of second order degenerate integro-differential equations in vector-valued function spaces
原文传递
导出
摘要 We study the well-posedness of the second order degenerate integro-differential equations (P2): (Mu)t'(t) + a(Mu)'(t) = Au(t) + ft_c~ a(t - s)Au(s)ds + f(t), 0 ≤ t ≤ 27r, with periodic boundary conditions Mu(O) = Mu(27r), (Mu)'(O) = (Mu)'(2π), in periodic Lebesgue-Bochner spaces LP(T,X), periodic Besov spaces BBp,q(T, X) and periodic Triebel-Lizorkin spaces F~,q('F, X), where A and M are closed linear operators on a Banach space X satisfying D(A) C D(M), a C LI(R+) and a is a scalar number. Using known operator- valued Fourier multiplier theorems, we completely characterize the well-posedness of (P2) in the above three function spaces. We study the well-posedness of the second order degenerate integro-differential equations(P2):(Mu)(t)+α(Mu)(t) = Au(t)+ft-∞ a(ts)Au(s)ds + f(t),0t2π,with periodic boundary conditions M u(0)=Mu(2π),(Mu)(0) =(M u)(2π),in periodic Lebesgue-Bochner spaces Lp(T,X),periodic Besov spaces B s p,q(T,X) and periodic Triebel-Lizorkin spaces F s p,q(T,X),where A and M are closed linear operators on a Banach space X satisfying D(A) D(M),a∈L1(R+) and α is a scalar number.Using known operatorvalued Fourier multiplier theorems,we completely characterize the well-posedness of(P2) in the above three function spaces.
出处 《Science China Mathematics》 SCIE 2013年第5期1059-1072,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11171172)
关键词 Fourier multiplier degenerate integro-differential equation WELL-POSEDNESS Besov spaces Triebel- Lizorkin spaces 积分微分方程 向量函数空间 Triebel-Lizorkin空间 退化 二阶 Banach空间 周期性边界条件 Besov空间
  • 相关文献

参考文献1

二级参考文献1

共引文献6

同被引文献3

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部