摘要
We study the well-posedness of the second order degenerate integro-differential equations (P2): (Mu)t'(t) + a(Mu)'(t) = Au(t) + ft_c~ a(t - s)Au(s)ds + f(t), 0 ≤ t ≤ 27r, with periodic boundary conditions Mu(O) = Mu(27r), (Mu)'(O) = (Mu)'(2π), in periodic Lebesgue-Bochner spaces LP(T,X), periodic Besov spaces BBp,q(T, X) and periodic Triebel-Lizorkin spaces F~,q('F, X), where A and M are closed linear operators on a Banach space X satisfying D(A) C D(M), a C LI(R+) and a is a scalar number. Using known operator- valued Fourier multiplier theorems, we completely characterize the well-posedness of (P2) in the above three function spaces.
We study the well-posedness of the second order degenerate integro-differential equations(P2):(Mu)(t)+α(Mu)(t) = Au(t)+ft-∞ a(ts)Au(s)ds + f(t),0t2π,with periodic boundary conditions M u(0)=Mu(2π),(Mu)(0) =(M u)(2π),in periodic Lebesgue-Bochner spaces Lp(T,X),periodic Besov spaces B s p,q(T,X) and periodic Triebel-Lizorkin spaces F s p,q(T,X),where A and M are closed linear operators on a Banach space X satisfying D(A) D(M),a∈L1(R+) and α is a scalar number.Using known operatorvalued Fourier multiplier theorems,we completely characterize the well-posedness of(P2) in the above three function spaces.
基金
supported by National Natural Science Foundation of China(Grant No.11171172)