期刊文献+

优选组合预测法在短期负荷预测中的应用 被引量:3

Application of an Optimization Combined Forecasting Method in Short-Term Load Forecast
在线阅读 下载PDF
导出
摘要 采用优选组合预测法将时间序列法、灰色模型法、人工神经网络法进行有效组合,从而提高了预测精度。 The paper adopts an optimization combined frecasting method to efficiontly combine time sequence mothed, graymodel mothed and artifucial nerve network mothed, thus improving foreacst accuracy.
出处 《电气开关》 2013年第2期86-87,90,共3页 Electric Switchgear
关键词 短期负荷预测 时间序列 灰色模型 人工神经网络 优选组合 short - term load forecast time sequence gray model artificial nerve network optmization combinetion
  • 相关文献

参考文献4

二级参考文献14

  • 1陈宝林(Chen Baolin).最优化方法(Optimized Methods)[M].北京:清华大学出版社(Beijing:Tsinghua University Press),1989..
  • 2Hiroyuki Mori, Atsushi Yiihaha. Determinis annealing clustering for ANN-based short-term load forecasting[J], IEEE Transactions on Power Systems, 2001, 16(3): 545-551.
  • 3Gontar Z, Hatziargyrious N. Short term load forecasting with radial basis function network[C]. IEEE Porto Power Tech Conferenc, 11-13 September, 2001, Portugal(Porto),, 20-24.
  • 4Ranaweera D K, Hubele N F, Papalexopoulos A D. Application of radial basis function neural network model for short-term load forecasting[J]. IEE Proc.-Gener. Transm. Distrib., 1995, 142(1): 45-50.
  • 5Srinivasan D. Evolving artificial networks for short term load forecasting[J]. Neurocomputing, 1998, 23: 265-276.
  • 6Lamedica R, Prudenzi A, Sforna M. Aneural network based technique for short-term fore-casting of anomalous load periods[J].IEEE Transon Power Systems, 1996, 11(4): 1 749-1 755.
  • 7Chow T W S, Leung C T. Neural network based short-term load forecasting using weather compensation[J]. IEEE Trans on Power Systems, 1996, 11(4): 1 736-1 742.
  • 8Alfuhaid A S, El-Sayed M A, Mahmoud M S. Cascaded artificial neural networks for short-term load forecasting[J]. IEEE Trans on Power Systems, 1997, 12(4): 1 524-1 529.
  • 9康重庆,夏清,沈瑜,相年德.电力系统负荷预测的综合模型[J].清华大学学报(自然科学版),1999,39(1):8-11. 被引量:91
  • 10康重庆,程旭,夏清,沈瑜.一种规范化的处理相关因素的短期负荷预测新策略[J].电力系统自动化,1999,23(18):32-35. 被引量:78

共引文献125

同被引文献54

  • 1于希宁,牛成林,李建强.基于决策树和专家系统的短期电力负荷预测系统[J].华北电力大学学报(自然科学版),2005,32(5):57-61. 被引量:27
  • 2牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:124
  • 3HASSAN S, KHOSRAVI A, JAAFAR J. Improving load forecasting accuracy through combination of best forecasts [ C ]. IEEE International Conference on Power System Technology, Auckland, New Zealand :2012.
  • 4SINGH A K, IBRAHEEM I, KHATOON S, et al. Load forecasting techniques and methodologies :A review [ C ]. International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India :2012.
  • 5YING CHEN, LUH P B, CHE GUAN, et al. Short-Term load forecasting: Similar day-based wavelet neural networks [ J ]. IEEE Transactions on Power Systems ,2010,25 ( 1 ) :322 - 330.
  • 6STOCKMAN M, EIRAMLI R S, AWAD M, et al. An asymmetrical and quadratic support vector regression loss function for beirut short term load forecast [ C ]. IEEE International Conference on Systems, Man and Cybernetics ( SMC ), Seoul, Korea : 2012.
  • 7HAQUE A U, MANDAL P, MENG J, et al. A novel hybrid approach based on wavelet transform and fuzzy ARTMAP network for predicting wind farm power production [ C ]. IEEE Industry Applications Society Annual Meeting( IAS), Las Vegas, NV, USA :2012.
  • 8GHELARDONI L, GHIO A, ANGUITA D. Energy load forecasting using empirical mode decomposition and Support Vector Regression [ J ]. IEEE Transactions on Smart Grid,2013,4( 1 ) :549 -556.
  • 9MORI H, KURATA E. An efficient kernel machine technique for short- term load forecasting under smart grid environment [ C 1. IEEE on Power and Energy Society General Meeting, San Diego, CA, USA :2012.
  • 10TASRE M B, GHATE V N, BEDEKAR P P. Hourly load forecasting using artificial neural network for a small area [ C ]. International Conference on Engineering, Science and Management (ICAESM), Nagapattinam, Tamil Nadu, India :2012.

引证文献3

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部