期刊文献+

H→γγ:a comment on the indeterminacy of non-gauge-invariant integrals

H→γγ:a comment on the indeterminacy of non-gauge-invariant integrals
原文传递
导出
摘要 We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in some recent papers. We address here the general issue of the indeterminacy of integrals with four-dimensional gauge-breaking regulators and to which extent it might eventually be solved by imposing physical constraints. Imposing gauge invariance as the last step upon Rξ-gauge calculations with four-dimensional gauge-breaking regulators, allows us to recover the well known H→γγ result. However we show that in the particular case of the unitary gauge, the indeterminacy cannot be tackled in the same way. The combination of the unitary gauge with a cutoff regularization scheme turns out to be non-predictive. We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in some recent papers. We address here the general issue of the indeterminacy of integrals with four-dimensional gauge-breaking regulators and to which extent it might eventually be solved by imposing physical constraints. Imposing gauge invariance as the last step upon Rξ-gauge calculations with four-dimensional gauge-breaking regulators, allows us to recover the well known H→γγ result. However we show that in the particular case of the unitary gauge, the indeterminacy cannot be tackled in the same way. The combination of the unitary gauge with a cutoff regularization scheme turns out to be non-predictive.
出处 《Chinese Physics C》 SCIE CAS CSCD 2013年第4期7-13,共7页 中国物理C(英文版)
关键词 Higgs decay regularization methods loop calculations gauge invariance Higgs decay; regularization methods; loop calculations; gauge invariance
  • 相关文献

参考文献18

  • 1Gastmans R,WU S L,WU T T. arXiv:1108.5322[hep-ph].
  • 2Gastmans R,WU S L,WU T T. arXiv:1108.5872[hep-ph].
  • 3Ellis J R,Gaillard M K,Nanopoulos D V. Nucl. Phys. B,1976,106: 292.
  • 4Shifman M A et al. Sov. J. Nucl. Phys.,1979,30: 711-716 [Yad.Fiz.30:1368-1378,1979].
  • 5Dyson F. Phys. Rev.,1949,75: 486; 1736.
  • 6Shifman M et al. Phys. Rev. D,2012,85: 013015.
  • 7HUANG D,TANG Y,WU Y L. Commun. Theor. Phys.,2012,57: 427.
  • 8Marciano W,ZHANG C,Willenbrock S. Phys. Rev. D,2012,85: 013002.
  • 9Jegerlehner F. arXiv:1110.0869[hep-ph].
  • 10Cornwall J M,Levin D N,Tiktopoulos G. Phys. Rev. D,1974,10: 1145; Chanowitz M S,Gaillard M K. Nucl. Phys. B,1985,261: 379; Bagger J,Schmidt C. Phys. Rev. D,1990,41: 264; Veltman H. Phys. Rev. D,1990,41: 2294; HE H J. KUANG Y P,LI X. Phys. Rev. Lett.,1992,69: 2619.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部