期刊文献+

朴素贝叶斯算法和SVM算法在Web文本分类中的效率分析 被引量:8

Efficiency Analysis of Naive Bayes Algorithm and SVM Algorithm in Web Text Classification
在线阅读 下载PDF
导出
摘要 为分析对比朴素贝叶斯算法和SVM算法在Web文本分类中的效率及其适用的范围,构建了一个Web分类系统,此分类系统将已分类的Web网页作为训练集,利用分类算法构建Web分类器,通过Web测试集评价两类算法在Web文本分类中的性能体现,为Web文本分类算法选择提供一定的参考依据. A web classification system is built to analyze and compare the efficiency and scope of Naive Bayes algorithm and SVM algorithm in web text classification. The classified Web pages axe used for train- ing sets. The Web text classifier is built by using classification algorithm. The performance of both algo- rithms in the web text classification is evaluated by the web test set, which provides some reference for se- lection of web text classification algorithms.
作者 詹毅
出处 《成都大学学报(自然科学版)》 2013年第1期50-53,共4页 Journal of Chengdu University(Natural Science Edition)
关键词 Web分类系统 朴素贝叶斯算法 SVM算法 效率分析 web classification system Naive Bayes algorithm SVM algorithm efficiency analysis
  • 相关文献

参考文献7

二级参考文献26

  • 1靳小波.文本分类综述[J].自动化博览,2006,23(z1):24-29. 被引量:16
  • 2高茂庭,王正欧.几种文本特征降维方法的比较分析[J].计算机工程与应用,2006,42(30):157-159. 被引量:16
  • 3Fahrizio S. Machine learning in automated text categorization. ACM Computing Surveys ( CSUR ) ,2002,34 : 1 - 47.
  • 4Yang Y. An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1999 ( 1 ) :69 - 90.
  • 5Manning C D, Schuitze H. Foundations of statistical natural language processing. MIT Press, 1999.
  • 6Forman G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research,2003 ( 3 ) : 1289 - 1305.
  • 7Bishop C M. Pattern recognition and machine learning,Springer,2006.
  • 8Joachims T. Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms. Kluwer Academic Publishers,2002.
  • 9Yang Y,Pedersen J O. A comparative study on feature selection in text categorization. 1997.
  • 10SEBASTIANI F. Machine learning in automated text categorization[J]. ACM Computing Surveys,2002,34( 1 ):1- 47.

共引文献44

同被引文献73

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部