期刊文献+

腰椎间融合后路非对称与对称固定螺钉应力的有限元比较 被引量:4

Screw stress features of the posterior asymmetric or symmetric fixation of transforaminal lumbar fusion based on a three-dimensional finite element method
暂未订购
导出
摘要 背景:经椎间孔腰椎间融合非对称固定的生物力学稳定性研究,发现固定效果与双侧椎弓根螺钉接近,可满足临床应用所需生物力学要求。经关节突椎弓根螺钉参与经椎间孔腰椎间融合非对称固定的螺钉力学安全性又会怎样呢?目的:建立L4-5功能节段左侧经椎间孔腰椎间融合后,分别予以同侧椎弓根螺钉+对侧经关节突椎弓根螺钉、同侧椎弓根螺钉+对侧经椎板关节突螺钉及双侧椎弓根螺钉固定的三维有限元模型,施加相同的载荷,分析不同运动状态下螺钉应力分布特点,比较3种螺钉应力状况。方法:对一成人正常L4-5椎节段标本、椎间融合器、椎弓根螺钉和皮质骨螺钉进行64排螺旋CT扫描,通过Mimics11.1建立左侧经椎间孔腰椎间融合后3种内固定组合(同侧椎弓根螺钉+对侧经椎板关节突螺钉、同侧椎弓根螺钉+对侧经关节突椎弓根螺钉及双侧椎弓根螺钉固定)的几何模型,利用Simpleware3.1软件分别建立三维有限元模型,模拟500N\6Nm载荷下前屈、后伸、左\右侧弯、左\右侧旋等6种运动状态,用Abaqus6.8软件进行螺钉应力变化和分布特点分析。结果与结论:由于经椎间孔腰椎间融合入路切除了左侧关节突,造成内植物应力分布不对称,对弹性模量大的内固定器械—椎弓根螺钉应力影响最大,尤其是在左旋运动时。在不对称组合内固定中,由于关节突关节螺钉的使用,使对侧椎弓根螺钉应力相应增加,以左旋运动时尤为明显,但关节突关节螺钉断裂的危险性增高不明显。提示为降低螺钉断裂的风险,经椎间孔腰椎间融合后路3种组合内固定均应严格限制旋转运动,尤其是关节突切除侧的旋转运动。 BACKGROUND: Biomechanical investigation had discovered that effectiveness of the posterior asymmetric fixation based on transforaminal lumbar fusion is similar to double side pedicle screws fixation, which can meet the clinical biomechanical requirement. How is the transfacetopedicular screw security in posterior asymmetric fixation after transforaminal lumbar fusion? OBJECTIVE: To develop three-dimensional finite element model of L4-s segment treated with posterior ipsilatera pedicle screws supplemented with contralateral transfacetopedicular screw fixation, posterior ipsilateral pedicle screws supplemented with contralateral translaminarfacet screw fixation and posterior bilateral pedicle screws fixation after transforamina! lumbar fusion respectively and treated with the same load, in order to evaluate the stress of the screws under different kinestates and the stress of three kinds of screws combined fixation in transforaminal lumbar fusion. METHODS: The geometrical model was created by Mimics 11.1 based on CT data of L4/5 motion segment, fusion cage, pedicle screws and os integumentale screw from an adult man. Different fixation models after left transforaminal lumbar fusion including the following sequentially test configurations: ipsilateral pedicle translaminarfacet screw; ipsilateral pedicle screws+contralateral transfacetopedicular screw; bilateral pedicle screws. Subsequently, the above models were imported into the Simpleware 3.1 in order to establish the three-dimensional finite element models. 500 N/6 Nm loading was loaded on the upper surface of L of trensforaminal lumbar fusion supplement with three types of fixations to simulate lumbar flexion, extension, lateral bending and axial rotation. The three-dimensional finite element models were imported into Abaqus 6.8 to analyze the stress changes and stress distribution of screws. RESULTS AND CONCLUSION: Left facet joint was removed in transforaminal lumbar fusion procedure, leading to asymmetry stress attribution of internal implants. For rigid pedicle screws fixation, they were more influenced by asymmetry stress attribution, especially under left axial rotation. In asymmetry fixation, the stress of ipsilateral pedicle screws was increased accordingly due to the influence of transfacetopedicular screw, especially under left axial rotation. However, the breakage risk of screws remained lower under rotation controlled properly. For stepping down the risk of pedicle screws fatigue breakage, the axial rotation after three kinds of fixation based on transforaminal lumbar fusion should be restrict severely, especially the axial rotation on the side that facet joint was destroyed.
出处 《中国组织工程研究》 CAS CSCD 2013年第9期1555-1562,共8页 Chinese Journal of Tissue Engineering Research
关键词 骨关节植入物 脊柱植入物 腰椎 脊柱融合 椎弓根螺钉 关节突固定 经关节突椎弓根螺钉固定 经椎板关节突螺钉固定 有限元 应力峰值 骨关节植入物图片文章 bone and joint implants spinal implants lumbar spinal fusion pedicle screw facet fixation facetpedicle screw fixation translaminar facet screws finite element peak stress photographs-conta n ng paper ofbone and joint implants
  • 相关文献

参考文献24

  • 1Harms J,Rolinger H. A one-stager procedure in operative treatment of spond- yloistheses:dorsal traction-reposition and anterior fusion[J].{H}Zeitschrift fur Orthopadie und Ihre Grenzgebiete,1982,(03):343-347.
  • 2Schwender JD,Hol y LT,Ruben DP. Minimal y invasive transforaminal lumbar interbody fusion (TLIF):Technical feasibility and initial results[J].Spinal Disorder Tech,2005,(Suppl):S1-S6.
  • 3Kandziora F,Schleicher P,Scholz M. Biomechanical testing of the lumbar facet interference screw[J].{H}SPINE,2005,(02):E34-E39.
  • 4Slucky AV,Brodke DS,Bachus KN. Less invasive posterior fixation method fol owing transforaminal lumbar interbody fusion:a biomechanical analysis[J].{H}SPINE,2006,(01):78-85.
  • 5Schleicher P,Beth P,Ottenbacher A. Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimal y invasive transforaminal lumbar interbody fusion[J].Neurosurg Spine,2008,(04):363-371.
  • 6Sethi A,Lee S,Vaidya R. Transforaminal lumbar interbody fusion using uni- lateral pedicle screws and a translaminar screw[J].Eur Spine,2009,(03):430-434.
  • 7毛克亚,王岩,肖嵩华,张永刚,刘保卫,张西峰,崔庚,张雪松,李鹏,毛克政.单侧微创经椎间孔腰椎体间融合术采用椎弓根螺钉结合经椎板关节突螺钉混合内固定可行性研究[J].中华外科杂志,2011,49(12):1067-1070. 被引量:42
  • 8敖俊,靳安民,赵卫东,张辉,闵少雄,于博,陈伟义.腰椎经椎间孔椎体间融合不对称内固定的生物力学稳定性实验研究[J].南方医科大学学报,2009,29(5):959-961. 被引量:6
  • 9Vadapal i S,Sairvo K,Goel VK. Biomechanical rationale for using poly- etheretherketone(PEEK) spacer for lumbar interbody fusion-A finite element study[J].{H}SPINE,2006,(26):E992-E998.
  • 10Schmidt H,Heuer F,Drumm J. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J].{H}Clin Biomech(Bristol Avon),2007,(04):377-384.

二级参考文献32

  • 1Harms J,Rolinger HA.One-stager procedure in operative treatment of spondyloistheses:dorsal traction-reposition and anterior fusion[J].Z Orthop Ihre Grenzgeb,1982,120(3):343-7.
  • 2Mummaneni PV,Haid RW,Rodts GE.Lumbar interbody fusion:state-of-the-art technical advance[J].Neurosurg Spine,2004,1 (1):24-30.
  • 3Harris BM,Hilibrands AS,Savas PE,et al.Transforaminal lumbar interbody fusion:the effect of varions instrumentation techniques on the flexibility of the lumbar spine[J].Spine,2004,29(4):E65-E70.
  • 4Tuttle J,Shakir A,Choudhri HF.Paramedian approach for transforaminal lumbar interbody fusion with unilateral pediele screw fixation:Technical note and preliminary report on 47 cases[J].Neurosurg Focus,2006,20(3):E5.
  • 5Geol VK,Lim TH,Gwon J,et al.Effect of rigidity of an internal fixation device:a comprehensive biomechanical investigation[J].Spine,1991,16(3 Suppl):S155-61.
  • 6Schleicher P,Beth P,Ottenbacher A,et al.Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion[J].J Nenrosurg Spine,2008,9(4):363-71.
  • 7Slucky AV,Bendke DS,Bachus KN,et al.Less invasive posterior fixation method following transfora minal lumbar interbody fusion:a biomcchanical analysis[J].J Spine,2006,6(1):78-85.
  • 8Kim SM,Lira TJ,Paterno J,et al.A biomechanical comparision of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion[J].J Neurosurg Spine,2004,1(1):101-7.
  • 9Karikari IO,Isaacs RE.Minimally invasive transforaminal lumbar interbody fusion:a review of techniques and outcomes.Spine (Phila Pa 1976),2010,35:S294-S301.
  • 10Lau D,Lee JG,Han SJ,et al.Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF).J Clin Neurosci,2011,18:624-627.

共引文献60

同被引文献53

  • 1Mummaneni PV, Haid RW,Rodts GE. Lumbar interbody fusion :state - of - the - art technical advances [ J ]. J Neurosurg Spine,2004,1(1) :24 -30.
  • 2Harris BM,Hilibrand AS,Savas PE,et al. Transforaminal lumbarinterbody fusion : the effect of various instrumentation techniqueson the flexibility of the lumbar spine [ J]. Spine,2004,29 (4):E65 - E70.
  • 3Tuttle J, Shakir A, Choudhri HF. Paramedian approach for trans-foraminal lumbar interbody fusion with unilateral pedicle screw fix-ation :technical note and preliminary report on 47 cases [ J]. Neu-rosurg Focus, 2006,20(3) :E5.
  • 4Kasis AG, JMarshman LA, Krishna M, et al. Significantly im-proved outcomes with a less invasive posterior lumbar interhody fu-sion incorporating total facetectomy Spine, 2009,34 ( 6 ) : 572 -577.
  • 5Kasai Y,Lnaba T, Kato T, et al. Biomechanical study of the lum-bar spine using a unilateml pedicle screw fixation system [ J ]. JClin Neurosci, 2010,17(3) :364 -367.
  • 6Finkelstein JA, Zaveri GWai E, et al. A population-based study ofsurgery for spine metastases. Survival rates and complications[ J]. J bone Joint Surg Br,2003,85 (7) :1045-1050.
  • 7Lievre JA, Darcy M, Pradat P, et al. Giant cell tumor of the lumbar spine; total spondylectomy in 2 states [ J ]. Rev Rhum Mal Osteoartic, 1968,35 : 125-130.
  • 8Tomita K, Kawahara N, Murakami H , et al. Total en bloc spondylectomy for spine tumors : improvement of the technique and its associated basic background[ J]. J Orthop Sci ,2006,11 (1) : 3-12.
  • 9O'Reilly MA,Whyne CM. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm [J]. Spine (Phila Pa 1976), 2008 ,33 (17) :1876-1881.
  • 10Diseh AC, Luzzati A, Melcher, et al. Three-dimensional stiffness in a thoraeolumbar en-bloc spondyleetomy model:a biomechanical in vitro study[ J]. Clin Biomech(Bristol) ,2007,22(9 ) :957-964.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部