期刊文献+

基于SVR的非线性时间序列预测方法应用综述 被引量:20

Application of nonlinear time series forecasting methods based on support vector regression
在线阅读 下载PDF
导出
摘要 基于支持向量回归(Support Vector Regression,简称SVR)的非线性时间序列预测是智能预测的重要前沿课题,在许多领域有着非常广泛的应用前景。文章介绍了SVR基本理论和方法,从金融、电力、交通、旅游等领域的典型应用对基于SVR的非线性时间序列预测进行了综述,分析了目前SVR在核函数、自由参数选择和输入数据处理方面存在的问题及其在应用领域进一步研究的方向。 Support vector regression(SVR)-based nonlinear time series forecasting is an important advanced topic in intelligent forecasting,and has extensive application prospect in many fields.In this paper,the basic theory and method of SVR are introduced.Then a survey is conducted on SVR-based nonlinear forecasting in view of its application in the fields of finance,power,transportation and tourism.Finally,the existing problems of kernel function,free parameters selection and input data handling are analyzed.Meanwhile,the further application fields in the future research are also prospected.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期369-374,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(71271072 71131002) 高等学校博士学科点专项科研基金资助项目(20110111110006) 安徽高校省级自然科学研究资助项目(KJ2012B097) 国家级大学生创新训练资助项目(201211305013)
关键词 支持向量机 支持向量回归 非线性 时间序列预测 support vector machine support vector regression(SVR) nonlinearity time series forecasting
  • 相关文献

参考文献46

  • 1Box G E P, Jenkins G M, Reinsel G C. Time series analysis: forecasting and control [M]. 4th ed. A John Wile Sons, Inc, 1976: 55-59.
  • 2Box G E P, Piercd D A. Distribution of residual autocorrelations in autoregressive integrated moving average time series models[J]. Journal of the American Statistical Association, 1970, 65(332) : 1509-1526.
  • 3Christiaanse W R. Short term load forecasting using general exponential smoothing [J]. IEEE Transactions on Power Apparatus and Systems, 1971,90(2): 900-911.
  • 4王婷婷,钱晓东.时间序列的非线性趋势预测及应用综述[J].计算机工程与设计,2010,31(7):1545-1549. 被引量:17
  • 5牛东晓,邢棉.时间序列的小波神经网络预测模型的研究[J].系统工程理论与实践,1999,19(5):89-92. 被引量:69
  • 6Vapnik V N. The nature of statistical learning theory [M].许建华,张学工,译.北京:电子工业出版社,2009:138-141.
  • 7王革丽,杨培才,毛宇清.基于支持向量机方法对非平稳时间序列的预测[J].物理学报,2008,57(2):714-719. 被引量:41
  • 8Hong W C, Dong Y C, Chen L Y, et al. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting [J]. Applied Soft Computing, 2011, (11) : 1881-1890.
  • 9Trafalis T B, Ince 14. Support vector machine for regression and applications to financial forecasting [C]//IEEE-INNS-ENNS Int Joint Con/on Neural Networks, 2000:348-353.
  • 10Tay F E H, Cao L J. Application of support vector machines in financial time series forecasting [J]. The International Journal of Management Science-Omega 2001 (29) :309-317.

二级参考文献93

共引文献333

同被引文献191

引证文献20

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部