期刊文献+

广义有限元法计算飞机开口裂纹应力强度因子 被引量:1

Calculation of Stress Intensity Factor for Fuselage Opening's Crack Based on General Finite Element Method
在线阅读 下载PDF
导出
摘要 机身开口圆角损伤可能逐渐形成裂纹从而严重影响飞机使用安全,为此对圆角裂纹进行剩余强度估算显得十分重要。使用Williams位移场广义有限元法进行裂尖单元加强,并对裂尖区域应用放射形网格划分技术,编写广义有限元法的MATLAB程序,研究并计算飞机舱门开口圆角裂纹的应力强度因子。结果表明:在裂纹分析上,广义有限元法较常规有限元法具有更好的适应性和更高的精度。 The damage of fuselage opening fillet may gradually be developed into a crack,which seriously influences the safety of aircraft,so it is necessary to estimate the residual strength of fillet crack.The General Finite Element Method(GFEM)of Williams displacement field is used to enrich the elements at crack tip.The radiated meshing technology is also applied at crack tip zone,and then the MATLAB program of GFEM is written to study and calculate the stress intensity factor(SIF)of fuselage opening's fillet crack.The results show that GFEM has a better flexibility and higher accuracy than Finite Element Method(FEM)in the analysis of crack.
出处 《航空工程进展》 2013年第1期49-53,共5页 Advances in Aeronautical Science and Engineering
关键词 广义有限元法 应力强度因子 机身开口裂纹 Williams位移场 General Finite Element Method stress intensity factor crack of fuselage opening Williams displacement field
  • 相关文献

参考文献11

二级参考文献87

共引文献62

同被引文献12

  • 1杨绿峰,李桂青,秦荣,李创第.具有广义参数的高阶有限样条元[J].广西大学学报(自然科学版),1996,21(4):307-311. 被引量:1
  • 2SRAWLEY J E. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens [ J ]. International Journal of Fracture, 1976, 12(3) : 475-481.
  • 3蔡延义,谢干权.等参数单元在确定应力强度因子中的应用[J].水利学报,1981(1):23-31.
  • 4FU P C, JOHNSON S M, SETI'GAST R R, et al. Generalized displacement correlation method for estimating stress inten- sity factors[ J]. Engineering Fracture Mechanics, 2012, 88: 90-107.
  • 5WILLIAMS M K On the stress distribution at the base of a stationary crack[ J]. Journal of Applied Mechanics, 1957, 24(1) : 109-114.
  • 6WU Z M, YANG S T, HU X Z, et al. An analytical model to predict the effective fracture toughness of concrete for three- point bending notched beams[ J]. Engineering Fracture Mechanics, 2006, 73(15) : 2166-2191.
  • 7KUMAR S, BARAI S V. Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function[ J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33 (10) : 645-660.
  • 8冶金工业部钢铁研究院断裂力学组.单边裂纹梁横向力弯曲下的K和K11[J].力学学报,1977(4):308-413.
  • 9杨绿峰,徐华,彭俚,李冉.断裂问题分析的Williams广义参数单元[J].计算力学学报,2009,26(1):33-39. 被引量:7
  • 10杨绿峰,徐华,李冉,彭俚.广义参数有限元法计算应力强度因子[J].工程力学,2009,26(3):48-54. 被引量:13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部