期刊文献+

一种GIS空间知识分析的影像纹理尺度提取算法

GIS spatial knowledge-based multi-scale texture feature extraction
原文传递
导出
摘要 本文提出了一种基于GIS领域空间知识的影像纹理尺度提取方法:该方法分析了GIS领域知识辅助下人类对纹理特征的认知过程,对4个步骤的具体实现算法进行探讨;并选取海南省昌江县作为研究区域,实验证明了本方法的有效性,且与传统的枚举法相比,在性能相近的情况下其效率显著提高,更适合于大数据量遥感影像分类运算。 Texture is an important image special knowledge, whereas scales are the major factor to affect its validity. This study put forward an algorithm of GIS spatial knowledge-based multi-scale texture feature extraction. It analyzed the human cognition custom for texture feature under GIS knowledge auxiliary, and concluded that the texture scale parameter is strong correlated with feature geom- etry characteristic, and it could be determined based on stable features geometry characteristic from a historical database. Based on the above, this study first described the spatial geometry characteristic by ER algorithm, then followed extracting texture scale parameters by relevant data mining algorithm. Finally, the strong correlation charistiristics between texture scale factor and classified object shape were proved in experiments that the proposed algorithm could be used to quickly and adaptively choose the texture scale factors compa- ring with the traditional methods, to meet the request. Furthermore, the multi-resolution texture descriptors could improve the separa- bility among different land use categories, so that the total number of classification categories could be increased and more in line with the land use requirements.
作者 兰泽英 刘洋
出处 《测绘科学》 CSCD 北大核心 2013年第2期109-112,127,共5页 Science of Surveying and Mapping
基金 国家973基金支持项目(2006CB701303)
关键词 高分辨率遥感影像分类 多尺度纹理特征提取 GIS空间知识 high-resolution remote sensing images classification multi-scale texture feature extraction GIS spatial knowledge
  • 相关文献

参考文献14

  • 1Wang Li, He Dong-chen. Texture unit, texture spectrum, and texture analysis [ C ]//IEEE Transactions on Geosci- ence and Remote Sensing. 1990, 28(4) : 509-512.
  • 2刘晓民.纹理研究综述[J].计算机应用研究,2008,25(8):2284-2288. 被引量:25
  • 3B S Manjunath, W Y Ma. Texture Features for Browsing and Retrieval of Image Data [ C ]//IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996, 18 (8) : 837-842.
  • 4马洪超,李德仁.基于空间统计学的空间数据窗口大小的确定[J].武汉大学学报(信息科学版),2001,26(1):18-23. 被引量:23
  • 5M Chica-Olmo, F Abarca-Hernandez. Computing geosta- tistical image texture for remotely sensed data classification [ J]. Computers & Geosciences, 2000, 26: 373-383.
  • 6Zhang C, Franklin S E, Wulder M A. Geostatistical and texture analysis of airborne-acquired images used in forest classification [ J ]. International Journal of Remote Sens- ing, 2004, 25: 859-865.
  • 7Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance [J]. International Journal of Remote Sensing. 2007, 28 (5) : 823-870.
  • 8陈述彭.遥感地学分析的时空维[J].遥感学报,1997,1(3):161-171. 被引量:61
  • 9李德仁,王树良,李德毅.空问数据挖掘理论与应用[M].北京:科学出版社,2006:1-30.
  • 10杨存建,周成虎.基于知识的遥感图像分类方法的探讨[J].地理学与国土研究,2001,17(1):72-77. 被引量:95

二级参考文献78

共引文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部