期刊文献+

对称的满层L-Kent收敛空间范畴的子范畴

The Subcategories of Symmetric Stratified L-Kent Convergence Spaces
原文传递
导出
摘要 在满层的L-Kent收敛空间中引入了对称性的概念,定义了对称的满层L-Kent收敛空间范畴,对称的满层L-极限空间范畴,对称的满层L-主收敛空间范畴,对称的满层L-拓扑空间范畴。证明这四个范畴是拓扑范畴,并且后一个是前一个的反射子范畴。最后证明了对称的满层L-Kent收敛空间范畴和对称的满层L-极限空间范畴是笛卡儿闭的。 In this paper, the concept of symmetric stratified L-Kent convergence spaces is introduced, and the categories of symmetric stratified L-Kent convergence spaces, symmetric stratified L-limit spaces, symmetric stratified L-principal convergence spaces and symmetric stratified L-topological spaces are defined. Further it is proved that these categories are topological categories, and the latter is a reflective subcategory of the former. Finally it is proved that the categories of symmetric stratified L-Kent convergence spaces and symmetric stratified L-limit spaces are cartesian closed.
作者 高小燕
出处 《模糊系统与数学》 CSCD 北大核心 2013年第1期84-90,共7页 Fuzzy Systems and Mathematics
基金 陕西省教育厅科技计划项目(09JK834)
关键词 对称的满层L-Kent收敛空间 反射子范畴 笛卡儿闭 拓扑范畴 Symmetric Stratified L-Kent Convergence Space Reflective Subcategory Cartesian Closed Topological Category
  • 相关文献

参考文献10

  • 1Lowen R. Convergence in fuzzy topological spaces[J]. General Topology and Applications, 1979,10:147- 160.
  • 2Min K C. Fuzzy limit spaces[J]. Fuzzy Sets and Systems, 1989,32:343-357.
  • 3Lee B Y, Park J H, Park B H. Fuzzy convergence structures[J]. Fuzzy Sets and Systems,1993,56:309-315.
  • 4Lowen E, Lowen R, Wuyts P. The categorical topology approach to fuzzy topology and fuzzy convergence[J]. Fuzzy Sets and Systems, 1991,40 : 347- 373.
  • 5Jager G. A category of L-fuzzy convergence spaces[J]. Quaestiones Mathematicae,2001,24:501-517.
  • 6Jager G. Subcategories of lattice valued convergence spaces[J]. Fuzzy Sets and Systems, 2006,156:1- 24.
  • 7郑崇友,樊磊,崔宏斌.Frame与连续格[M].北京:首都师范大学出版社,2003.
  • 8Hohle U, Rodabaugh S E. Mathematics of fuzzy sets: Logic, topology, andmeasure theory[M]. London: Kluwer Academic Publishers, 1999.
  • 9姚卫.模糊偏序集上的模糊Scott拓扑及模糊拓扑空间的特殊化L-序[D].北京:北京理工大学,2008.
  • 10Preuss G. Foundations of topology[M]. London:Kluwer Academic Publishers,2002.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部