摘要
在满层的L-Kent收敛空间中引入了对称性的概念,定义了对称的满层L-Kent收敛空间范畴,对称的满层L-极限空间范畴,对称的满层L-主收敛空间范畴,对称的满层L-拓扑空间范畴。证明这四个范畴是拓扑范畴,并且后一个是前一个的反射子范畴。最后证明了对称的满层L-Kent收敛空间范畴和对称的满层L-极限空间范畴是笛卡儿闭的。
In this paper, the concept of symmetric stratified L-Kent convergence spaces is introduced, and the categories of symmetric stratified L-Kent convergence spaces, symmetric stratified L-limit spaces, symmetric stratified L-principal convergence spaces and symmetric stratified L-topological spaces are defined. Further it is proved that these categories are topological categories, and the latter is a reflective subcategory of the former. Finally it is proved that the categories of symmetric stratified L-Kent convergence spaces and symmetric stratified L-limit spaces are cartesian closed.
出处
《模糊系统与数学》
CSCD
北大核心
2013年第1期84-90,共7页
Fuzzy Systems and Mathematics
基金
陕西省教育厅科技计划项目(09JK834)
关键词
对称的满层L-Kent收敛空间
反射子范畴
笛卡儿闭
拓扑范畴
Symmetric Stratified L-Kent Convergence Space
Reflective Subcategory Cartesian Closed
Topological Category