期刊文献+

分区域聚类的蚁群算法 被引量:2

Ant Colony Algorithm for Local Clustering
在线阅读 下载PDF
导出
摘要 根据旅行商问题中城市分布的特点,提出了分区域聚类的蚁群算法.首先,对城市分布进行球形聚类,再分别对剩下的城市进行线形聚类和孤立点聚类.采用这样的分区域聚类的蚁群算法收敛速度快,寻求的解更优.实验表明,该算法比基本蚁群算法在求得解更优的同时,速度快3~13倍. Based on the characteristics of urban distribution in the TSP problem, an ant colony algorithm is put forth for local clustering. First, urban distribution is treated by means of spherical clustering. Subsequently, the remaining cities are subjected to the treatment of linear clustering and isolated points clustering respectively. The ant colony algorithm for local clustering is characterized by a faster velocity of convergence and a better sought solution as well. Experimental results show that, by use of such an algorithm, the solution thus worked out is not only better but also the speed can be 3-13 times faster than by means of the basic ant colony algorithm.
作者 杨琼
出处 《内江师范学院学报》 2013年第2期25-27,共3页 Journal of Neijiang Normal University
关键词 旅行商问题 蚁群算法 聚类 分区域聚类 TSP ant colony algorithms clustering local clustering
  • 相关文献

参考文献9

二级参考文献50

  • 1蔡元龙.模式识别[M].西安:西安电子科技大学出版社,1992.67-69.
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3[1]Linde Y, Buzo A, Gray R M. An Algorithm for Vector Quantization Design[J]. IEEE Trans. on Commum., 1980, COM-28(1):84~95.
  • 4[2]Fr nti P, Timo Kaukoranta, Shen Day-Fann. Fast and Memory Efficent Implementation of the Exact PNN[J]. IEEE Trans. on Image Process, 2000, 9(5).
  • 5[3]Chang Chin-Chen, Hu Yu-Chen. A Fast LBG Codebook Training Algorithm for Vector Quantization[J]. IEEE Trans. on Consumer Electronics, 1998, 44(4).
  • 6[4]Pan J S, Mc Innes F R, Jack M A. Fast Clustreing Algorithm for Vector Quantization[J]. Pattern Recognition, 1996,29(3):511~518.
  • 7[5]Timo Kaukoranta, Fr nti P, Olli Nevalainnem. Vector Quantization by Lazy Pairwise Nearest Neighbor Method[J]. Opt.Eng., 1999,38(11):1862~1868.
  • 8[6]Timo Kaukoranta, Fr nti P, Olli Nevalainnem. Iterative Split-and-Merging Algorithm for Vector Quantization Codebook Generation[J]. Opt.Eng., 1998,37(10):2726~2732.
  • 9Baraldi F, Parmiggiani F. Fuzzy-shell Clustering and Applications to Circle Detection in Digital Images. Int. J. General Syst. 1995, 16:34-3.
  • 10Frigui H, Krishnapuram R. A Comparison of Fuzzy Shell-clustering Method for the Detection of Ellipses. IEEE Transactions on Fuzzy System, 1996, 4: 193-199.

共引文献45

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部