期刊文献+

汽车声品质的GA-BP神经网络预测与权重分析 被引量:19

Sound quality prediction and weight analysis of vehicles based on GA-BP neural network
在线阅读 下载PDF
导出
摘要 为了高效而准确地评价与控制车内噪声品质,以B级车稳态工况下副驾位置的车内噪声为研究对象,采用等级评分法对采集到的声音样本进行了主观评价试验,同时计算了7个客观参数。以客观参量为输入,声品质主观结果为输出,引入基于遗传算法的BP神经网络建立了声品质预测模型。实验显示该模型输出结果与实际评分的相关系数达到0.928,检验组的预测最大误差为±8%。以所建模型的连接权值,分析了客观参数对主观评价结果的贡献度,并以影响系数较大的参数为输入重新构建了预测模型。研究结果表明:稳态工况下,车内声品质主要受响度、粗糙度和尖锐度的影响,其预测模型可由这3个参数来描述。 This paper carried out a subjective evaluation test with magnitude estimation for 78 noise samples to evaluate the sound quality of vehicles.In the test,six types of B-Class vehicles were taken as the study objects and sound signals collected in co-driver locations at steady states as experimental samples.Meanwhile,seven objective parameters were calculated to describe the sound characteristics.By using objective parameters as inputs,subjective values as outputs,a GA-BP neural network was adopted to establish a sound quality prediction model.Experiments show that the model gives good predictions of high correlation(0.928) and low error(±8%).Then,the network connection coefficients were used to calculate the impact weight of objective parameters on the results of subjective evaluation,and a new model with main parameters was established.As expected,the loudness,sharpness and roughness with a total relative importance of 83% are the most influential parameters in vehicle interior sound quality.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第2期462-468,共7页 Optics and Precision Engineering
基金 吉林省科技发展计划资助项目(No.20100361 No.20126007)
关键词 车内噪声 声品质预测 GA-BP神经网络 权重分析 vehicle interior noise sound quality prediction GA-BP neural network weight analysis
  • 相关文献

参考文献10

  • 1GENUIT K. The sound quality of vehicle interior noise., a challenge for the NVH engineers[J].Ve- hicle Noise and Vibration, 2004, 1(1):158-168.
  • 2SANG-KWON L. Objective evaluation of interior sound quality in passenger cars during acceleration [J]. Journal of Sound and Vibration, 2008, 310 (5) :149-168.
  • 3高印寒,孙强,粱杰,谢军.B级轿车车内噪声品质的主观评价研究[J].噪声与振动控制,2010,30(4):115-118. 被引量:12
  • 4申秀敏,左曙光,李林,张世炜.车内噪声声品质的支持向量机预测[J].振动与冲击,2010,29(6):66-68. 被引量:32
  • 5SAHIN Y, IKBALK E. Sound quality analysis of cars using hybrid neural networks[J].SimulationModeling Practice and Theory, 2008, 16 (4): 410- 418.
  • 6孙强.基于人工神经网络的汽车声品质评价与应用研究[D].长春:吉林大学仪器科学与电气工程学院,2011.
  • 7郭海湘,诸克军,胡杰,刘婷.GA-BP嵌套算法的理论及应用[J].数学的实践与认识,2008,38(1):116-125. 被引量:10
  • 8王平,王彩芸,王文健,刘启跃.GA-BP网络在钢轨磨损量预测中的应用[J].润滑与密封,2011,36(2):99-102. 被引量:15
  • 9MENG X P, ZHANG H G, TAN W Y. A hybrid method of GA and BP for short term economic dis- patch of hydrothermal power systems[J]. Mathe- matics and Computers in Simulation, 2000, 51 ( 4 ) :341-348.
  • 10ALEBOYEH A, KASIRI M B. Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks [J].Dyes and Pigments, 2008 (77) :288-294.

二级参考文献34

共引文献60

同被引文献122

引证文献19

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部