摘要
针对梯形直觉模糊数运算过于复杂且不能作不确定性分析的问题,应用集对分析理论及其联系数给出一种新算法.该算法的基本原理是把梯形直觉模糊数转换成"均值"加"最大偏差"形式的二元联系数,再按联系数规则展开运算.实例应用表明:其决策对象的排序结果不仅与该实例用其它方法所得的结果基本相同,而且还能方便地开展不确定性分析,最主要的是该算法也适用于"区间型梯形模糊数决策问题".该方法综合利用了集对分析及其联系数研究中的最新成果,解决了梯形直觉模糊决策算法的运算复杂性问题,对于模糊决策的理论和应用研究都具有重要价值.
Aiming at the complexity of operation of trapezoidal intuitionistic fuzzy number and its disability of uncertainty analysis,a kind of new algorithm was given by the application of the set pair analysis theory and its correlate.The basic principle was to transform trapezoidal intuitionistic fuzzy number into the two-element connection number of mean-variance,and started operating according to the rule of correlate.It is proved that the ranking result of decision objects can not only get the same result as it used by other methods but also be convenient to carry out the uncertainty analysis.The most important point is the algorithm also apply to interval tapezoidal fuzzy number.The algorithm used the latest achievements of set pair analysis theory and its correlate comprehensively to solve the complexity of operation of trapezoidal intuitionistic fuzzy number.It was quite important to the research on the theory and application of fuzzy decision.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2012年第6期687-694,共8页
Journal of North University of China(Natural Science Edition)
关键词
梯形直觉模糊数
区间型梯形模糊数
联系数
集对分析
不确定性分析
多属性决策
trapezoidal intuitionistic fuzzy number
interval tapezoidal fuzzy number
correlate
set pair analysis
uncertainty analysis
multiple attribute decision making