期刊文献+

对含噪声数据的一种鲁棒学习算法 被引量:1

A Robust Learning Algorithm for Noise Data
原文传递
导出
摘要 llowing for the limitations of LS energy function used in BP algorithm, thispaper proposes a robust learning algorithm based on the study of how cluster-ing puts down radom noise’s effects and the consideration of intensified trainingfor high-quality examples. Some simulation results demonstrate that the robustalgorithm is clearly superior to BP algorithm in anti-disturbance and aJstringency. llowing for the limitations of LS energy function used in BP algorithm, thispaper proposes a robust learning algorithm based on the study of how cluster-ing puts down radom noise's effects and the consideration of intensified trainingfor high-quality examples. Some simulation results demonstrate that the robustalgorithm is clearly superior to BP algorithm in anti-disturbance and aJstringency.
出处 《数值计算与计算机应用》 CSCD 北大核心 2000年第2期112-120,共9页 Journal on Numerical Methods and Computer Applications
基金 广东省重点学科项目!970003 广东省自然科学基金!960101
关键词 神经网络 鲁棒学习算法 噪声数据 noise, neural network, energy function, clustering, robustness,astringency
  • 相关文献

参考文献1

二级参考文献3

  • 1Chen D S,IEEE Trans on Neural Networks,1994年,5卷,3期,467页
  • 2张铃,模式识别与人工智能,1994年,7卷,3期
  • 3Chen Tianping,IEEE Trans on Neural Networks,1993年,4卷,6期,910页

共引文献6

同被引文献16

  • 1Samuel L. Some studies in machine learning using the game of checkers, Part Ⅱ [ J]. IBM Journal Research and Development, 1967,11 (4) :601 - 618.
  • 2Vapnik V. The Nature of Statistical Learning Theory[ M] .New York: Springer-Veflag, 1995.
  • 3Sutton R, Barto A. Reinforcement Learning: An Introduction [ M]. Cambridge, MA: The MIT Press, 1998.
  • 4Kaelbling L, Littman M, Moore A. Reinforcement learning: A survey[ J]. Journal of AI Research, 1996,4:237 - 285.
  • 5Silva V D, Tenenbaum J B. Global versus local methods in non- linear dimensionality reduction[ J]. Neural Information Processing Systems( NIPS'2002 ), 2003,15 : 705 - 712.
  • 6Blum A,Mitchell T. Combining labeled and unlabeled data with co_ traning[ A ]. Proc llth Annual Conf Computational Learning Theory[ C]. Madison, WI, 1998.92 - 100.
  • 7Ratsch G, Onoda T, Muller K. Soft margins for AdaBoost[ J]. Machine Learning, 2001,42(3) : 287 - 320.
  • 8Dietterich T G,Lathrop R H, Lozano-Perez T. Solving the nultiple-instance problem with axisparaUel rectangles[ J]. mrtificial Intelligence, 1997,89( 1 - 2) :31 - 71.
  • 9LI Fan-zhang. Dynamic Fuzzy Logic And It Applications[M]. Nova Science Pubfishers,2008,5.
  • 10Roweis S T, Lawrence K S. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 (5500) :2323 - 2326.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部