期刊文献+

基于Goldstein枝切算法的MR相位像解缠方法改进 被引量:2

Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm
暂未订购
导出
摘要 磁共振相位像的信息可应用于一些特殊MR成像技术,如磁敏感成像、弹性成像、温度监控等,但是扫描得到的相位像常常会出现相位缠绕导致相位信息不准确,因此相位解缠成为上述成像技术成功的关键。本文分析了目前常用Goldstein枝切算法产生错误解缠的原因,并在此基础上进行了算法改进,提出在解缠流程中引入掩模处理、滤波及最近邻偶极子对去除的最小生成树等步骤,从而改善Goldstein枝切算法需要的残差图。实验结果表明这种方法使得残差点数量明显下降,枝切线的重复连接、闭合回路及贯通线等引起错误解缠的情形得到改善,明显提高了解缠后的相位像质量。 The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2013年第2期239-242,共4页 Journal of Southern Medical University
基金 国家自然科学基金(61072033) 广州市行业工程中心建设项目(穗科信条[2010]13-1)~~
关键词 磁共振相位像 相位解缠 Goldstein枝切算法 PRIM算法 magnetic resonance phase image phase unwrapping Goldstein Brunch-cut algorithm Prim algorithm
  • 相关文献

参考文献21

  • 1Haacke EM,Xu Y,Cheng YN. Susceptibility weighted imaging (SWI)[J].Magnetic Resonance in Medicine,2004,(3):612-618.doi:10.1002/mrm.20198.
  • 2Sinkus R,Lorenzen J,Schrader D. High resolution tensor MRI elastography for breast tumor detection[J].Physics in Medicine and Biology,2000.1649-1664.
  • 3Rauscher A,Barth M,Herrmann KH. Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths[J].Journal of Magnetic Resonance Imaging,2008.1145-1151.
  • 4Ehman RL. MR elastography quantitatively assesses liver fibrosis[J].Radiology,2006.440-448.
  • 5Chyou JJ,Chen SJ,Chen YK. Two-dimensional phase unwrapping with a m ultichannel least mean square algorithm[J].Applied Optics,2004,(30):5655-5661.
  • 6Fornaro G,Franceschetti G,Lanari R. Interferometric SAR phase unwrapping using Green's formulation[J].IEEE Transactions on Geoscience and Remote Sensing,1996,(03):720-727.
  • 7Pritt MD. Phase unwrapping by means of multigrid techniques for interferomtric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1996,(03):728-738.doi:10.1109/36.499752.
  • 8Buchnland JR,Huntley JM,Turner SR. Unwrapping noisy phase maps by use of a minimum cost matching algorithm[J].Applied Optics,1995,(23):5100-5108.doi:10.1364/AO.34.005100.
  • 9Costantini MA. Novel phase unwrapping method based on network programming[J].IEEE Transactions on Geoscience and Remote Sensing,1998,(03):813-821.doi:10.1109/36.673674.
  • 10Kolmogorov V,Zabin R. What energy functions can be minimized via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,(02):147-159.doi:10.1109/TPAMI.2004.1262177.

二级参考文献56

  • 1李笑郁,毛士艺.分支阻断干涉SAR相位展开算法的解析与实现[J].电子学报,2001,29(z1):1790-1793. 被引量:6
  • 2高小峰,张建凤.基于MATLAB及小波变换的遥感图像处理与分析[J].微计算机信息,2006(03S):238-240. 被引量:20
  • 3杨磊,刘伟,赵拥军.干涉SAR相位解缠中的枝切策略分析[J].测绘科学,2007,32(3):75-77. 被引量:4
  • 4Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4) :713-720.
  • 5Xu W, Cumming I. A region-growing algorithm for InSAR phase unwrapping [J]. IEEE Trans Geosci Remote Sens,1999, 37(1): 124-134.
  • 6Herraez M A, Burton D R, Lalor M J, et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 2002, 41(35):7437-7444.
  • 7Lyuboshenko I V, Maitre H, Maruani A. Leastmean-squares phase unwrapping by use of an incomplete set of residue branch cuts[J]. Applide Optics, 2002, 41(11) :2129-2148.
  • 8Takajo H, Takahashi T. Noniterative methods for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference[J]. J Opt Soc Am,1988,AS:1818-1827.
  • 9Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping: theory, algorithm, and software [M]. New York: John Wiley & Sons Ine, 1998.
  • 10[1]Bamler R,Hartl P.Synthetic aperture radar interferometry [J].Inverse Problems,1998,14:R1-R54.

共引文献13

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部