期刊文献+

基于平行坐标的多视图协同可视分析方法 被引量:18

Coordinated Visual Analytics Method Based on Multiple Views with Parallel Coordinates
原文传递
导出
摘要 平行坐标和散点图矩阵技术是多维数据可视化和可视分析的主要技术,然而在数据较为杂乱时,这些技术都存在局部信息无法清晰展现的缺陷。结合平行坐标和散点图矩阵等技术,提出了一种简单、快捷的多视图协同可视分析方法。该方法用在平行坐标中嵌入直方图等统计方法来解决局部可视化的缺陷,通过融合不同技术的优点,从不同的角度对多维数据进行可视化和可视分析,从中挖掘出有价值的信息。将该方法应用到农药残留检测数据的分析中,取得了良好效果。 Parallel coordinates and scatter-plot matrix are the main visualization and visual analysis techniques for multidimensional data. However, these techniques have defects that local information can not be shown clearly when data set is large and complex. A simple and flexible visual analysis method called multiple coordinated views based on parallel and scatter-plot matrix was proposed. This method combined with the advantages of the parallel coordinates and scatter-plot matrix, and embedded some statistical analysis techniques such as histograms in Parallel Coordinates to compensate those defects. Users could analyze multidimensional data in different perspectives simultaneously, and mine valuable information from the multidimensional data set with this method. The results of application in the pesticide residue detection data set show that this method can implement visual analysis to multidimensional data flexibly and effectively.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第1期81-86,共6页 Journal of System Simulation
基金 "十二五"国家科技支撑计划项目(2012BAD29B01) 北京市属高等学校科学技术与研究生教育创新工程建设项目(PXM2012_014213_000079 PXM2012_014213_000037)
关键词 多维数据 平行坐标 多视图协同可视分析 农药残留检测数据 multidimensional data parallel coordinates multiple coordinated views detection data ofpesticide residues
  • 相关文献

参考文献4

二级参考文献47

  • 1董庆华.数据可视化技术在农业领域的应用探讨[J].山西农业大学学报(自然科学版),2007,27(5):52-53. 被引量:2
  • 2余肖生,周宁,张芳芳.高维数据可视化方法研究[J].情报科学,2007,25(1):117-120. 被引量:12
  • 3Riccardo Mazza.Introduction to Information Visualization[M].Springer,2009:30-80.
  • 4J(a)nicke H,Wiebel A,Scheuermann G,et al..Multifield visualization using local statistical complexity[J].IEEE Transactions on Visualization and Computer Graphics,2007,13 (6):1384-1391.
  • 5Chen M,Ebert D,Hagen H,et al..Data,information,and knowledge in visualization[J].IEEE Computer Graphics and Applications,2009,29 (1):12-19.
  • 6Chen C M.CiteSpace Ⅱ:Detecting and visualizing emerging trends and transient patterns in scientific literature[J].Journal of the American Society for Information Science and Technology,2006,57 (3):359-377.
  • 7Daniel Patel,φyvind Sture,Helwig Hauser,et al..Knowledge-assisted visualization of seismic data[J].Computers & Graphics,2009,33 (5):585-596.
  • 8Wong P C,Thomas J.Visual analytics[J].IEEE Computer Graphics and Applications,2004,24 (5):20-21.
  • 9Mackinlay J D,Hanrahan P,StolteC.Show me:automatic presentation for visual analysis[J].IEEE Transactions on Visualization and Computer Graphics,2007,13 (6):1137-1144.
  • 10Wong P C,Leung L R,Lu N,et al..Designing a collaborative visual analytics tool for social and technological change prediction[J].IEEE Computer Graphics and Applications,2009,29 (5):58-68.

共引文献88

同被引文献129

引证文献18

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部