期刊文献+

基于全向小波的图像边缘检测算法 被引量:21

An Edge Detection Algorithm Based on Omni-Directional Wavelet Transform
在线阅读 下载PDF
导出
摘要 针对现有边缘检测算法难以提取图像任意方向的边缘特征,提出基于全向小波的图像边缘检测算法.首先,定义了全向小波的概念、构造其模型并推导了全向小波的最大值与梯度模值相等的关系.理论分析表明本文算法始终沿小波变换值的最大值方向提取边缘.然后,选择二维高斯函数实例化模型,以8方向和3×3变换窗为例进行算法设计.标准图像对比试验表明本文算法能提取更多方向的边缘特征、边界清晰度也比SADD算法、Canny算子分别高出约2.17%、8.66%. Existing edge detection algorithms are difficult to extract image edge characteristics in all directions.An edge de- tection algorithm based on Omni-directional wavelet transform (OWT) was proposed in this paper. First, the concept of Omni-direc- tion wavelet was proposed. We constructed its model and analyzed the relation between the maximal value of Omni-directional wavelet and gradient magnitude. Theoretical analysis demonstrated that OWT always extract edges along the direction of maximal gratitude. Second,2D gauss function was selected to instantiate the model. We designed OWT algorithm based on 8 directions and 3 * 3 mapping window. Experimental results show that OWT can extract plenty edge features in more directions from visual sense and better than SADD,Carmy algorithm in Image-Edge-Definition (IED) by 2.17,8.66 percent,respectively.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2451-2455,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61100215 No.61173036) 湖南省科技厅科技计划(No.2011GK3200) 湖南省自然科学基金湘潭联合基金(No.12JJ9021) 湖南省高校创新平台开放基金(No.2009GK3016) 湘潭大学博士启动项目(No.10QDZ30)
关键词 梯度模值 方向小波 边缘检测 图像处理 gradient magnitude directional wavelet edge detection image processing
  • 相关文献

参考文献12

  • 1张永平,郑南宁,赵荣椿.基于视觉模型的图像边缘检测算法[J].电子学报,2000,28(1):101-103. 被引量:13
  • 2张闯,迟健男,张朝晖,王志良.基于边缘检测与双边滤波的彩色图像去噪[J].电子学报,2010,38(8):1776-1783. 被引量:39
  • 3Alaa Kh Al-Azzawi,M Iqbal Saripan,Adznan Jantan. Edge detection innovator based on wavelet coefficients for images corrupted by the white-gaussian noise[J].Scientific Research and Essays,2011,(06):5951-5965.
  • 4Mallat S,Hwang W L. Singularity detection and processing with wavelets[J].IEEE Transactions on Information theory,1992,(02):617-643.doi:10.1109/18.119727.
  • 5Mallat S,Zhong S. Characterization of signals from multi-scale edges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,(07):710-732.
  • 6Dusan Heric,Damjan Zazula. Adaptive edge detection with directional wavelet transform[A].Wisconsin,USA:WSEAS Stevens Point,2005.1-4.
  • 7章国宝,叶桦,陈维南.基于正交小波变换的多尺度边缘提取[J].中国图象图形学报(A辑),1998,3(8):651-654. 被引量:38
  • 8张军,成礼智,杨海滨,黄魁华.基于纹理的自适应提升小波变换图像压缩[J].计算机学报,2010,33(1):184-192. 被引量:29
  • 9Zhen Zhang,Siliang Ma. An edge detection approach based on directional wavelet transform[J].Computers and Mathematics with Applications,2009,(08):1265-1271.doi:10.1016/j.camwa.2008.11.013.
  • 10Jun-Fang Wu,Gui-Xiong Liu. Wavelet edge detection based on self-adjusted directional derivative[J].Proceedings of the SPIE,2009.73840J-73840J-7.

二级参考文献30

  • 1Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: Theory and design. IEEE Transactions on Signal Process, 1992, 40(4) : 882- 893.
  • 2Candes E J, Donoho D L. Curvelets- A surprisingly effective nonadaptive representation for objects with eclges//Cohen A ed. Curve and Surface Fitting. Saint-Malo: Vanderbuilt University Press 1999.
  • 3Do M N, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12); 2091-2106.
  • 4Pennec E L, Mallat S, Sparse geometric image represenlation with bandelets. IEEE Transactions on Image Processing, 2005,14(4) : 423-438.
  • 5Wang D, Zhang L, Vincent A, Speranza F. Curved wavelet transform for image coding. IEEE Transactions on Image Processing, 2006, 15(8); 2413-2421.
  • 6Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511- 546.
  • 7Ding W, Wu F, Li S. Lifting based wavelet transform with directionally spatial prediction//Proceedings of the Process Picture Coding Symposium 2004. San Francisico, CA, USA, 2004, 20: 483-488.
  • 8Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and Regression Trees (Wadsworth Statistics/Probability Series). Belmont, CA: Wadsworth, 1984.
  • 9Taubman D S, Marcellin M W. JPEG2000: Image Compression Fundamentals, Standards and Practice. Boston: Kluwer Academic Publishers, 2002.
  • 10Mallat S. A Wavelet Tour of Signal Processing. 2nd Edition. San Diego: Academic Press, 1999.

共引文献114

同被引文献206

引证文献21

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部