期刊文献+

基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取 被引量:146

Fault Diagnosis Method for Rolling Bearing’s Weak Fault Based on Minimum Entropy Deconvolution and Sparse Decomposition
在线阅读 下载PDF
导出
摘要 受环境噪声及信号衰减的影响,强背景噪声下的滚动轴承故障特征往往表现得非常微弱。滚动轴承的微弱故障特征提取一直是难点。稀疏分解在滚动轴承的故障特征提取中已经取得一定的应用。但其在强背景噪声干扰下滚动轴承微弱信号故障的特征提取效果并不明显。将最小熵解卷积(Minimum entropy deconvolution,MED)与稀疏分解相结合用于滚动轴承的微弱故障特征提取。用MED对强噪声滚动轴承信号进行降噪处理,对降噪后的信号进行稀疏分解和故障特征提取,取得了较好的效果。通过仿真和试验验证了所述方法的有效性及优点。 The rolling bearing is one of the key mechanical parts whose fault diagnosis is very important. The roiling bearing's fault feature under strong background noise is very weak for reasons of environment noise impact and signal attenuation. The feature extraction of rolling beating's weak fault is not only very important but also very hard. The sparse decomposition has been used in the fault feature extraction of rolling bearing. But its performance is very poor when the background noise is very strong. The minimum entropy deconvolution (MED) and sparse decomposition are combined for rolling bearing's weak fault diagnosis. The strong background noise of rolling bearing is decreased by the MED method firstly, then the de-noised signal is handled by the sparse decomposition. At last the envelope demodulation is carried on the last given signal and better result is obtained. In the end through simulation signal and experiment the effectiveness and advantage of the proposed method are verified.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第1期88-94,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51035007 51175239 5110543)
关键词 最小熵解卷积 稀疏分解 滚动轴承 微弱故障 特征提取 Minimum entropy deconvolution Sparse decomposition Roiling beatings Weak fault Feature extraction
  • 相关文献

参考文献10

  • 1MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785.
  • 2QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090.
  • 3BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711.
  • 4崔玲丽,康晨晖,胥永刚,高立新.滚动轴承早期冲击性故障特征提取的综合算法研究[J].仪器仪表学报,2010,31(11):2422-2427. 被引量:28
  • 5曾庆虎,邱静,刘冠军,张勇.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118. 被引量:17
  • 6郑海波,陈心昭,李志远.基追踪降噪及在齿轮故障诊断中的应用[J].振动.测试与诊断,2003,23(2):128-130. 被引量:4
  • 7WALDEN A T_ Non-Gaussian reflectivity, entropy anddeconvolution[J]. Geophys, 1985,50(12): 2862-2888.
  • 8WIGGINS R A. Minimum entropy deconvolution,geophys[J]. Exploration,1978, 16: 21-35.
  • 9ANTONI J,BONNARDOT F, RAAD A. Cyclostationarymodeling of rotating machine vibration signals[J].Mechanical System and Signal Processings 2004, 18(6):1285-1314.
  • 10RANDALL R B, ANTONI J, CHOBSAARD S. Therelationship between spectral correlation and envelopewlysis in the diagnostics of beaiing faults and othercyclostationaiy machine signals[J]. Mechanical Systemsand Signal Processing, 2001,15(5): 945-962.

二级参考文献26

共引文献45

同被引文献1089

引证文献146

二级引证文献1529

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部