期刊文献+

参数自适应的图像亚像素级配准方法 被引量:1

Parameter-adaptive approach to image sub-pixel registration
在线阅读 下载PDF
导出
摘要 目前基于区域的图像配准方法不能同时满足宽范围运动参数和高准确度的配准要求。基于图像变换的频域和空间域特性,提出一种运动参数自适应的图像配准方法,设计了旋转参数、平移参数的估计步骤和融合方法。基于仿真实验对参数自适应方法与Vandewalle方法、Keren改进方法的效果进行了比较分析,采用误差的标准差和均方误差两项指标评价配准算法的参数自适应性和配准准确度,参数自适应方法的两项评价指标均低于另两种方法,表明其在宽范围运动参数估计方面有自适应能力和高配准精度。 The performance of some current area-based image registration algorithms declines when image transformation parameters are of both wide range and high precision. Concerning this problem, a parameter-adaptive registration algorithm was proposed based on the natures of image transformation in frequency/space domain, and the estimation steps and fusion method for rotation parameter and shift parameter were designed. A set of simulation experiments were implemented to compare the performance of the proposed algorithm with the Vandewalle's and improved Keren's. Mean square error and standard deviation of square error were used as evaluation indicators for registration precision and parameters adaptation. The two indicators of the proposed algorithm are lower than those of the other two methods, which means the proposed algorithm has adaptive ability in wide range parameters estimation and high accuracy of registration.
出处 《计算机应用》 CSCD 北大核心 2013年第2期487-490,共4页 journal of Computer Applications
关键词 图像配准 亚像素 运动参数估计 自适应 图像融合 image registration sub-pixel motion parameter estimation adaptive image fusion
  • 相关文献

参考文献14

  • 1葛永新,杨丹,张小洪.基于边缘特征点对对齐度的图像配准方法[J].中国图象图形学报,2007,12(7):1291-1295. 被引量:10
  • 2文贡坚,吕金建,王继阳.基于特征的高精度自动图像配准方法[J].软件学报,2008,19(9):2293-2301. 被引量:26
  • 3MALIK S A,KUNWAR R S,HAQUE M E. Automatic image registration using evolutionary algorithm[J].Recent Research Science and Technology,2011,(01):33-39.
  • 4全卉.超分辨率图像配准和重建[D]上海:上海交通大学,2009.
  • 5TSAI R Y,HUANG T S. Multiframe image restoration and registration[A].Greewich:JAI Press,1984.317-339.
  • 6LUCCHESE L,CORTELAZZO G M. A noise-robust frequency domain technique for estimating planar roto-translations[J].IEEE Transactions on Signal Processing,2000,(06):1769-1786.
  • 7VANDEWALLE P,S(U)SSTRUNK S,VETTERLI M. A frequency domain approach to registration of aliased images with application to super-resolution[J].Eurasip Journal on Applied Signal Processing,2006,(2006):233.
  • 8BERGEN J R,ANANDAN P,HANNA K J. Hierachical model-based motion estimation[A].Berlin:springer-verlag,1992.237-252.
  • 9VRIGKAS M,NIKOU C,KONDI L P. On the improvement of image registration for high accuracy super-resolution[A].Piscataway(NJ):IEEE,2011.181-184.
  • 10KEREN D,PELEG S,BRADA R. Image sequence enhancement using sub-pixel displacement[A].Washington,DC:IEEE Computer Society,1988.742-746.

二级参考文献57

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2范冲,龚健雅,朱建军.基于keren改进配准算法的POCS超分辨率重建[J].计算机工程与应用,2006,42(36):28-31. 被引量:10
  • 3HAJNAL J V. Medical image registration [ M]. Boca Raton: CRC Press LLC Headquarters, 2001.
  • 4WITTEKA A, MILLERA K, KIKINISB R, et al. Patient-specific model of brain deformation: Application to medical image registra- tion [J]. Journal of Biomechanics, 2007, 40(4): 919-929.
  • 5SCHNABEL J A, TANNER C, CASTELLANO-SMITH A D, et al. Validation of non-rigid image registration using finite-element meth- ods: Application to breast MR images [ J]. IEEE Transactions on Medical Imaging, 2003, 22(2): 238-247.
  • 6XUAN JIANHUA, WANG YUE, FREEDMAN M T, et al. Nonrigid medical image registration by finite-element deformable sheet-curve models [ J]. International Journal of Biomedical Imaging, 2006, 13(4) : 1 -9.
  • 7POPURI K, COBZAS D, JAGERSAND M. Fast FEM-based non- rigid registration [ C]// Proceedings of 2010 Canadian Conference on Computer and Robot Vision. Ottawa, Canada: [ s. n. ], 2010: 378 -385.
  • 8KROL A, UNLU M Z, MAGRI A, et al. Iterative finite element de- formable model for non-rigid coregistration of muhimodal breast ima- ges [ C]// Proceedings of the 2006 IEEE International Symposium on Biomedical Imaging. Washington, DC: IEEE Computer Society, 2006:852-855.
  • 9IBANEZ L, SCHROEDER W. The ITK software guide [ M]. 2nd ed. Clifton Park, NY: Kitware, 2005.
  • 10ARCHIP N, TATLI S, MORRISON P, et al. Non-rigid registration of pre-procedural MR images with intra-procedural unenhanced CT images for improved targeting of tumors during liver radiofrequency ablations [C]//MICCAI 2007: Proceedings of the 10th Internation- al Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2007:969-977.

共引文献49

同被引文献9

  • 1张培珍,江华俊,沈玉利.自适应块匹配搜索算法研究[J].计算机应用,2006,26(4):797-798. 被引量:3
  • 2Koga T,Lhauma K,Hirano A,et al.Motion compensated klterframe coding for video conference[C]//In Proc.Nat. Telecommunication Conf.,New Orleans, LA, November 29-December 3,1981 "_531-535.
  • 3Po L M,Ma M C.A novel four-step search algorithm for fast block motion estknation[J].IEEE Trans on Ckcuits and Systems for Video Tech,1996,6(3)'313-317.
  • 4Zhu S,Ma K K.A new diamond search algorithm for fast block-matchkig motion estimation[J].IEEE Trans on Image P rocessing,2000,9(2 )'287 -290.
  • 5Zhu C,Lin X,Chau L P.Hexagon-based search pattern for fast block motion estimation[J].IEEE Trans On Cir- cuits System Video Teclmology,2002,12(5):349-355.
  • 6Schultz R, Stevenson R. Extraction of high-resolution frames from video sequences[J]. IEEE Trans Image Processing,1996,5(6)996-101.
  • 7孙琰玥,何小海,宋海英,陈为龙.一种用于视频超分辨率重建的块匹配图像配准方法[J].自动化学报,2011,37(1):37-43. 被引量:27
  • 8赵前鑫,杨英宝.一种基于角点特征的遥感影像自动配准方法[J].测绘科学,2013,38(3):160-162. 被引量:6
  • 9蔡成涛,梁小龙,谭吉来,刘学.自适应最优块匹配视频稳像算法[J].系统工程与电子技术,2013,35(6):1324-1329. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部