期刊文献+

知识引导的智能优化算法在航路规划中的应用 被引量:2

Application of Knowledge-conducting Intelligent Optimization Algorithms to Path Planning
在线阅读 下载PDF
导出
摘要 为了提高智能优化算法对航路规划问题的求解质量和效率,提出了一种知识引导型智能优化算法的航路规划求解框架.与传统引导进化不同的是,考虑到以往所用知识的局限性,该框架并不是采用从前期优化过程中挖掘出来的知识,而是采用航路规划特定领域知识.为了描述引导方式,将智能优化算法形式化定义为3个引导对象的集合,从而将引导方式划分为7类单独或组合形式.根据航路规划特定领域知识的各自特点选择对应的引导方式,并将其结构化为能够改进算法性能的元策略.以粒子群优化算法为例对求解框架进行验证,仿真实验结果表明,特定领域知识的引导能够非常显著地提高算法的全局搜索性能和收敛速度. In order to improve the quality and efficiency of intelligent optimization algorithms for sol- ving path planning, the framework of knowledge-conducting intelligent optimization algorithms for solving path planning was proposed. Considering the limitaion of the knowledge adopted previously, the frame- work does not adopt the knowledge mined from previous iterations, which is different from the convention- al conducting evolution, but adopts the costomizing domain knowledge of path planning. In order to de- scribe the conducting manner, the intelligent optimization algorithms is defined formally as a set composed of 3 conducting objects, and the conducting manner is divided into 7 kinds of form which are separated or combined accordingly. A corresponding conducting manner is adopted according to the characteristic of dif- ferent costomizing domain knowledges of path planning, and these knowledges are transformd to struc- tured recta-strategy which can improve the performance of the algorithm. The solving framework is veri- fied by taking particle swarm optimization algorithm for instance, Simulation experiments results have in- dicated that the conducting of costomizing domain knowledge can improve the algorithm's global search ca-pabilities, and the algorithm possesses better convergence rate.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期103-108,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(70571084 61074121) 国家部委'十一五'科研计划资助项目(513040404-1)
关键词 知识 引导进化 智能优化算法 引导对象 引导方式 航路规划 knowledge conducting evolution intelligent optimization algorithms conducting object conducting manner path planning
  • 相关文献

参考文献14

  • 1TAI. S, COREY S. Assignment of cooperating UAVs 1o simultane- ous tasks using genetic algorithms[R]. San Francisco: AIAA,2005= 5829- 5843.
  • 2NAUYEN H V, NGO A V, SEUNG G I., etal. Obstacle avoidance path planningfor mobile robot based on multi colony ant algorithm [C]//First International Conference on Advances in ComputeHu- man Interaction. Martinique : IEEE, 2008 : 285- 289.
  • 3JUNG I. F, JARED S K, VIJAY K,et al. Path planning of un- manned aerial vehicles using B-splines and particle swarm optimization [J]. Journal of Aerospace Computing, Information, and ('omInunica tion, 2009, 6(4).- 271-290.
  • 4RUDOLPH G. Convergence analysis of canonical genetic algorithms [J]. IEEE "I?:ansactions on Neural Networks, 1994, 5(1) : 96- 101.
  • 5曹先彬,许凯,章洁,王煦法.基于生命期引导的生态进化模型[J].软件学报,2000,11(6):823-828. 被引量:5
  • 6范磊,阮怀忠,焦誉,罗文坚,曹先彬.用归纳学习引导进化[J].中国科学技术大学学报,2001,31(5):565-570. 被引量:7
  • 7I)[JONG K A. An analysis of the behavior of a class of genetic Map- rive systems[D]. Michigan: University of M/chigan, 1975.
  • 8BHANDARI D. Genetic algorithm with elitist model and its conver gence[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1996, 10(6): 731-747.
  • 9JONES T. Crossover, rnacromutation and population-based search [C]//Eshdman Led. Proceedings of the 6th International Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann Publish- ers, 1995: 73-80.
  • 10SCHRAIX)PH N N. Dynamic parameter encoding for genetic algo rithms[J]. Machine learning, 1992, 9(1): 9 21.

二级参考文献25

  • 1任敏,霍霄华.基于异步双精度滚动窗口的无人机实时航迹规划方法[J].中国科学:信息科学,2010,40(4):561-568. 被引量:11
  • 2周其忠,闫利,关世义,苏康,秦筱,陈晓东.一种针对运动目标的快速航迹规划方法[J].系统仿真学报,2007,19(5):987-989. 被引量:4
  • 3Kevin P B. High-fidelity real-time trajectory optimization for reusable launch vehicles [D]. California: Naval PostgraduateSchool,2006:28 -40.
  • 4Frazzoli E. Robust hybrid control for autonomous vehicle motion planning[D]. Massachusetts.. Massachusetts Institute of Tech- nology, 2001.
  • 5Amir T K. Trajectory design for cooperative combat missions[R]. IEEE 978 - 1 - 4244 - 1488 - 1,2007: 1 - 6.
  • 6Omar M H, Mustafa M M. Voronoi path planning technique for recovering communication in UAVs[R]. IEEE 978 - 1 - 4244 - 1968 - 5,2008.
  • 7Diederik V, Bram D, Jan S, et al. Time-energy optimal path track- ing for robots: a numerically efficient optimization approach [R]. IEEE 978- 1 - 4244- 1703- 2,2008:727- 732.
  • 8Yang G. Optimal path planning for unmanned air vehicles with kinematic and tactical constraints [C]// IEEE Conference on Decision and Control ,2002 : 1102 - 1108.
  • 9Brian R G, Joseph F H, Anthony M D, et al. Optimal path planning of UAVs using direct collocation with nonlinear pro- gramming[C]//AIAA Guidance, Navigation, and Control Con-ference and Exhibit, 2006:6196 - 6199.
  • 10Ren Bo, Zhou Tao, Yu Lei. Mission planning system for air- craft based on adaptive ant colony optimization algorithm[J].Journal of Computational Information Systems, 2008,4 (2) : 617 - 622,.

共引文献28

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部